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Chapter 1

Introduction

Nek5000 is designed to simulate laminar, transitional, and turbulent incompressible or low Mach-
number flows with heat transfer and species transport. It is also suitable for incompressible mag-
netohydrodynamics (MHD). Nek5000 is written in f77 and C. It uses MPI for message passing (but
can be compiled without MPI for serial applications) and some LAPACK routines for eigenvalue
computations (depending on the particular solver employed). In addition, it can be optionally cou-
pled with MOAB, which provides an interface to meshes generated with CUBIT. Nek5000 output
formats can be read by either postx or the parallel visualization package VisIt developed by Hank
Childs and colleagues at LLNL/LBNL. VisIt is mandatory for large problems (e.g., more than
100,000 spectral elements).

Computational approach

The spatial discretization is based on the spectral element method (SEM) [1], which is a high-order
weighted residual technique similar to the finite element method. In the SEM, the solution and
data are represented in terms of Nth-order tensor-product polynomials within each of E deformable
hexahedral (brick) elements. Typical discretizations involve E=100–10,000 elements of order N=8–
16 (corresponding to 512–4096 points per element). Vectorization and cache efficiency derive from
the local lexicographical ordering within each macro-element and from the fact that the action of
discrete operators, which nominally have O(EN6) nonzeros, can be evaluated in only O(EN4) work
and O(EN3) storage through the use of tensor-product-sum factorization [2]. The SEM exhibits
very little numerical dispersion and dissipation, which can be important, for example, in stability
calculations, for long time integrations, and for high Reynolds number flows. We refer to [3] for
more details. The code Nek5000 is based on the following design principles

• accessible both to beginners and experts alike

• accessible interface via Fortran to include user-defined modules

• the code intrinsics can be accessed and modified via the user files for more experienced
developers

• portability

• minimal use of external libraries to assure fast compile times
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ΩS

ΩS Ωf

∂Ωf (BC1) ∂Ωf (BC2)

∂Ωf = ∂ΩS

∂ΩS

Figure 1.1: Computational domain showing respective fluid and solid subdomains, Ωf and Ωs. The
shared boundaries are denoted ∂Ωf = ∂Ωs and the solid boundary which is not shared by fluid is
∂Ωs, while the fluid boundary not shared by solid ∂Ωf .

• fast matrix free operator evaluation with minimal storage

• matrix operations are implemented in assembler code M ×M routines to speed up computa-
tions

• the parallelism is "under the hood" demanding from the user only care in handling local versus
global operations and array sizes

• by testing at the beginning of each run which one of the 3 readily implemented parallel
algorithms behaves optimally it can be stated that the parallelism of Nek5000 is automatically
tuned to each machine

• direct access to parameters at runtime

• geometry and boundary conditions exposed to the user via the .rea file

• handling complex geometries that can be imported from external codes

1.1 Nek5000 solvers
Nek5000 solves the unsteady incompressible two-dimensional, axisymmetric, or three-dimensional
Stokes or Navier-Stokes equations with forced or natural convection heat transfer in both stationary
(fixed) or time-dependent geometry. It also solves the compressible Navier-Stokes in the Low Mach
regime, the magnetohydrodynamic equation (MHD). The solution variables are the fluid velocity
u = (ux, uy, uz), the pressure p, the temperature T . All of the above field variables are functions of
space x = (x, y, z) and time t in domains Ωf and/or Ωs defined in Fig. 1.1. Additionally Nek5000
can handle conjugate heat transfer problems.
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Incompressible Navier–Stokes equations

The governing equations of flow motion in dimensional form are

ρ(∂tu + u · ∇u) = −∇p+∇ · τ + ρf , in Ωf , (Momentum) (1.1)

where τ = µ[∇u +∇uT ].

∇ · u = 0 , in Ωf , (Continuity) (1.2)

If the fluid viscosity is constant in the entire domain the viscous stress tensor can be contracted
∇ · τ = µ∆u, therefore one may solve the Navier–Stokes equations in either the stress formulation,
or no stress

• Variable viscosity requires the full stress tensor ∇ · τ = ∇ · µ[∇u +∇uT ], and we shall refer
to this as the stress formulation

• Constant viscosity leads to a simpler stress tensor ∇ · τ = µ∆u, which we refer to as the ’no
stress’ formulation

Non-dimensional Navier-Stokes

Let us introduce the following non-dimensional variables x∗ = x
L , u∗ = u

U , t
∗ = t

L/U . For the
pressure scale we have two options

• convective effects are dominant i.e. high velocity flows p∗ = p
ρU2

• viscous effects are dominant i.e. creeping flows (Stokes flow) p∗ = pL
µU

For highly convective flows we choose the first scaling of the pressure and obtain the non-dimensional
Navier-Stokes:

∂u∗

∂t∗
+ u∗ · ∇u∗ = −∇p∗ + 1

Re
∇ · τ∗ + 1

Fr

f
g
. (1.3)

where τ∗ = [∇u∗ + ∇u∗T ]. The two non-dimensional numbers here are the Reynolds number
Re = ν

UL Fr and the Froude number, defined as Fr = U2

gL .

Energy equation

In addition to the fluid flow, Nek5000 computes automatically the energy equation

ρcp(∂tT + u · ∇T ) = ∇ · (k∇T ) + qvol , in Ωf ∪ Ωs (Energy) (1.4)

Non-dimensional energy/passive scalar equation

A similar non-dimensionalization as for the flow equations using the non-dimensional variables
x∗ = x

L , u∗ = u
U , t

∗ = t
L/U , T = T ∗−T0

δT leads to

∂t∗T
∗ + u∗ · ∇T ∗ = 1

Pe
∇ · ∇T ∗ + qvol , in Ωf ∪ Ωs (Energy) (1.5)

where Pe = LU/α, with α = k/ρcp.
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Passive scalars

We can additionally solve a convection-diffusion equation for each passive scalar φi, i=1,2,. . . in
Ωf ∪ Ωs

(ρcp)i(∂tφi + u · ∇φi) = ∇ · (ki∇φi) + (qvol)i. (1.6)

The terminology and restrictions of the temperature equations are retained for the passive
scalars, so that it is the responsibility of the user to convert the notation of the passive scalar
parameters to their thermal analogues. For example, in the context of mass transfer, the user should
recognize that the values specified for temperature and heat flux will represent concentration and
mass flux, respectively. Any combination of these equation characteristics is permissible with the
following restrictions. First, the equation must be set to unsteady if it is time-dependent or if there
is any type of advection. For these cases, the steady-state (if it exists) is found as stable evolution
of the initial-value-problem. Secondly, the stress formulation must be selected if the geometry is
time-dependent. In addition, stress formulation must be employed if there are traction boundary
conditions applied on any fluid boundary, or if any mixed velocity/traction boundaries, such as
symmetry and outflow/n, are not aligned with either one of the Cartesian x, y or z axes. Other
capabilities of Nek5000 are the linearized Navier-Stokes for flow stability, magnetohydrodynamic
flows etc.

Unsteady Stokes

In the case of flows dominated by viscous effects Nek5000 can solve the reduced Stokes equations

ρ(∂tu) = −∇p+∇ · τ + ρf , in Ωf (Momentum) (1.7)

where ∇ · τ = ∇ · µ[∇u +∇uT ] and

∇ · u = 0 , in Ωf (Continuity) (1.8)

Also here we can distinguish between the stress and non-stress formulation according to whether
the viscosity is variable or not. The non-dimensional form of these equations can be obtained using
the viscous scaling of the pressure.

Steady Stokes

If there is no time-dependence, then Nek5000 can further reduce to

−∇p+∇ · τ + ρf = 0 , in Ωf (Momentum) (1.9)

where ∇ · τ = ∇ · µ[∇u +∇uT ] and

∇ · u = 0 , in Ωf (Continuity) (1.10)
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Linearized Equations

In addition to the basic evolution equations described above, Nek5000 provides support for the
evolution of small perturbations about a base state by solving the linearized equations

ρ(∂tui′ + u · ∇ui
′ + u′i · ∇u) = −∇p′i + µ∇2u′i, ∇ · u′i = 0, (1.11)

for multiple perturbation fields i = 1, 2, . . . subject to different initial conditions and (typically)
homogeneous boundary conditions. These solutions can be evolved concurrently with the base fields
(u, p, T ). There is also support for computing perturbation solutions to the Boussinesq equations
for natural convection. Calculations such as these can be used to estimate Lyapunov exponents of
chaotic flows, etc.

Steady conduction

The energy Eq. 1.4 in which the advection term u · ∇T and the transient term ∂tT are zero. In
essence this represents a Poisson equation.

Low-Mach Navier-Stokes

The compressible Navier-Stokes differ mathematically from the incompressible ones mainly in the
divergence constraint ∇·u 6= 0. In this case the system of equations is not closed and an additional
equation of state (EOS) is required to connect the state variables, e.g. p = f(ρ, T ). However
Nek5000 can only solve the Low Mach approximation of the compressible Navier-Stokes. The Low-
Mach approximation decouples the pressure from the velocity leading to a system of equations
which can be solved numerically in a similar fashion as the incompressible Navier-Stokes.

The Low Mach equations in non-dimensional form are

ρ

(du
dt + u · ∇u

)
= −∇p+∇ · τ + ρf (1.12)

ρ

(dρ
dt + u · ∇ρ

)
= −∇ · u

ρ

(dT
dt + u · ∇T

)
= −∇ · k∇T

where τ = µ[∇u +∇uT − 2
3∇ · uI].

The implementation of the equation if state for the Low Mach formulation is for the moment
hard-coded to be the ideal gas equation of state p = ρRT . This allows for both variable density and
variable viscosity. The system is solved by substituting ρ = f(p, T ) into the continuity equation and
obtaining a so-called thermal divergence (the term ∇ ·u is given as a function of the temperature).
A more detailed description on how these equations connect is given in section 1.1 as well as in the
developer’s manual.

Incompressible MHD equations

Magnetohydrodynamics is based on the idea that magnetic fields can induce currents in a moving
conductive fluid, which in turn creates forces on the fluid and changing the magnetic field itself.
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The set of equations which describe MHD are a combination of the Navier-Stokes equations of fluid
dynamics and Maxwell’s equations of electromagnetism. These differential equations have to be
solved simultaneously, and Nek5000 has an implementation for the incompressible MHD.

Consider a fluid of velocity u subject to a magnetic field B then the incompressible MHD
equations are

ρ(∂tu + u · ∇u) = −∇p+ µ∆u + B · ∇B , (1.13)
∇ · u = 0 (1.14)

∂tB + u · ∇B = −∇q + η∆B + B · ∇u ,

∇ ·B = 0

where ρ is the density µ the viscosity, η resistivity, and pressure p.
The total magnetic field can be split into two parts: B = B0 + b (mean + fluctuations). The

above equations become in terms of Elsässer variables (z± = u± b)

∂z±

∂t
∓ (B0 · ∇) z± +

(
z∓ · ∇

)
z± = −∇p+ ν+∇2z± + ν−∇2z∓ (1.15)

where ν± = ν ± η.
The important non-dimensional parameters for MHD are Re = UL/ν and the magnetic Re

ReM = UL/η.
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Chapter 2

Quick start

2.1 Download and Build
This chapter provides a quick overview to using Nek5000 for some basic flow problems provided in
the .../examples directory.

Nek5000 runs under Linux or any Linux-like OS such as MAC, AIX, BG, Cray etc. The source
is maintained in an svn repository and can be downloaded from the Nek5000 homepage (google
nek5000) or, on linux systems, with the svn checkout command:

svn co https://svn.mcs.anl.gov/repos/nek5 nek5_svn

After downloading, build the tools by typing

cd nek5_svn/trunk/tools
maketools all

which will put the tools genbox, genmap, n2to3, postx, prex, and pretex in the top-level /bin
directory (and will create /bin if it does not exist). It may be necessary to edit the maketools
file to change the compilers (e.g., to pgf77/pgcc or ifort/icc). However, the default gfortran/gcc is
generally fine.

In addition to the compiled tools, there are numerous scripts in

nek5_svn/trunk/tools/scripts

that are useful to have in the execution path, achieved either by adding this directory to the path
or copying its contents to the top-level /bin directory. In the following, we assume that scripts such
as nek and nekb are in the path. We further assume that the nek5_svn/ prefix is implied in any
future directory reference, unless otherwise specified.

2.2 A worked example
As a first example, we consider the eddy problem due to Walsh 1. To get started, execute the
following commands,

1O. Walsh, “Eddy solutions of the Navier-Stokes equations,” The NSE II-Theory and Numerical Methods, J.G.
Heywood, K. Masuda, R. Rautmann, and V.A. Solonikkov, eds., Springer, pp. 306–309 (1992)
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cd
mkdir eddy
cd eddy
cp ~/nek5_svn/examples/eddy/* .
cp ~/nek5_svn/trunk/nek/makenek .

Modify makenek.
If you do not have mpi installed on your system, edit makenek, uncomment the IFMPI="false"

flag, and change the Fortran and C compilers according to what is available on your machine.
(Most any Fortran compiler save g77 or g95 will work.)

Nek5000 is written in F77 which has implicit typesetting as default. This means in practice
that if the user defines a new variable in the user file and forgets to define its type explicitly then
variable beginning with a character from I to N, its type is INTEGER. Otherwise, it is REAL.

This common type of mistake for a beginner can be avoided using a warning flag -Wimplicit.
This flag warns whenever a variable, array, or function is implicitly declared. Has an effect similar
to using the IMPLICIT NONE statement in every program unit.

Another useful flag may -mcmodel which allows for arrays of size larger than 2GB. This option
tells the compiler to use a specific memory model to generate code and store data. It can affect code
size and performance. If your program has global and static data with a total size smaller than 2GB,
-mcmodel=small is sufficient. Global and static data larger than 2GB requires -mcmodel=medium
or -mcmodel=large.

If you have mpi installed on your system or have made the prescribed changes to makenek, the
eddy problem can be compiled as follows

Compiling nek. makenek eddy_uv
If all works properly, upon comilation the executable nek5000 will be generated using eddy_uv.usr
to provide user-supplied initial conditions and analysis. Note that if you encountered a problem
during a prior attempt to build the code you should type

makenek clean;
makenek eddy_uv

Once compilation is successful, start the simulation by typing
Running a case: nekb eddy_uv
which runs the executable in the background (nekb, as opposed to nek, which will run in the

foreground). If you are running on a multi-processor machine that supports MPI, you can also run
this case via

A parallel run: nekbmpi eddy_uv 4
which would run on 4 processors. If you are running on a system that supports queuing for batch
jobs (e.g., pbs), then the following would be a typical job submission command

nekpbs eddy_uv 4
In most cases, however, the details of the nekpbs script would need to be modified to accommo-

date an individual’s user account, the desired runtime and perhaps the particular queue. Note that
the scripts nek, nekb, nekmpi, nekbmpi, etc. perform some essential file manipulations prior to
executing nek5000, so it is important to use them rather than invoking nek5000 directly.

To check the error for this case, type

grep -i err eddy_uv.log | tail

or equivalently
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grep -i err logfile | tail

where, because of the nekb script, logfile is linked to the .log file of the given simulation. If the
run has completed, the above grep command should yield lines like
1000 1.000000E-01 6.759103E-05 2.764445E+00 2.764444E+00 1.000000E+00 X err
1000 1.000000E-01 7.842019E-05 1.818632E+00 1.818628E+00 3.000000E-01 Y err

which gives for the x- and y-velocity components the step number, the physical time, the maxiumum
error, the maximum exact and computed values and the mean (bulk) values.

A common command to check on the progress of a simulation is

grep tep logfile | tail

which typically produces lines such as
Step 996, t= 9.9600000E-02, DT= 1.0000000E-04, C= 0.015 4.6555E+01 3.7611E-02

indicating, respectively, the step number, the physical time, the timestep size, the Courant (or CFL)
number, the cumulative wall clock time (in seconds) and the wall-clock time for the most recent
step. Generally, one would adjust ∆t to have a CFL of ∼0.5. See Section ?? for a comprehensive
discussion of timestep selection.

2.3 Viewing the First 2D Example
The preferred mode for data visualization and analysis with Nek5000 is to use VisIt. For a quick
peek at the data, however, we list a few commands for the native Nek5000 postprocessor. Assuming
that the maketools script has been executed and that /bin is in the execution path, then typing
postx
in the working directory should open a new window with a sidebar menu. With the cursor focus
in this window (move the cursor to the window and left click), hit return on the keyboard accept
the default session name and click plot with the left mouse button. This should bring up a color
plot of the pressure distribution for the first output file from the simulation (here, eddy_uv.fld01),
which contains the geometry, velocity, and pressure.

Alternatively one can use the script visnek, to be found in /scripts. It is sufficent to run
visnek eddy_uv (or the name of your session)

to obatain a file named eddy_uv.nek5000 which can be recognized in VisIt 2

Plotting the error: For this case, the error has been written to eddy_uv.fld11 by making a
call to outpost() in the userchk() routine in eddy_uv.usr. The error in the velocity components
is stored in the velocity-field locations and can be viewed with postx, or VisIt as before.

2.3.1 Modifying the First Example

A common step in the Nek5000 workflow is to rerun with a higher polynomial order. Typically,
one runs a relatively low-order case (e.g., lx1=5) for one or two flow-through times and then uses
the result as an initial condition for a higher-order run (e.g., lx1=8). We illustrate the procedure
with the eddy_uv example.

Assuming that the contents of nek5_svn/trunk/tools/scripts are in the execution path,
begin by typing

2https://wci.llnl.gov/simulation/computer-codes/visit/
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cp eddy_uv eddy_new

which will copy the requisite eddy_uv case files to eddy_new. Next, edit SIZE and change the two
lines defining lx1 and lxd from

parameter (lx1=8,ly1=lx1,lz1=1,lelt=300,lelv=lelt)
parameter (lxd=12,lyd=lxd,lzd=1)

to

parameter (lx1=12,ly1=lx1,lz1=1,lelt=300,lelv=lelt)
parameter (lxd=18,lyd=lxd,lzd=1)

Then recompile the source by typing

makenek eddy_new

Next, edit eddy_new.rea and change the line

0 PRESOLVE/RESTART OPTIONS *****

(found roughly 33 lines from the bottom of the file) to

1 PRESOLVE/RESTART OPTIONS *****
eddy_uv.fld12

which tells nek5000 to use the contents of eddy_uv.fld12 as the initial condition for eddy_new.
The simulation is started in the usual way:

nekb eddy_new

after which the command

grep err logfile | tail

will show a much smaller error (∼ 10−9) than the lx1=8 case.
Note that one normally would not use a restart file for the eddy problem, which is really designed

as a convergence study. The purpose here, however, was two-fold, namely, to illustrate a change
of order and its impact on the error, and to demonstrate the frequently-used restart procedure.
However for a higher order timestepping scheme an accurate restart would require a number of field
files of the same size (+1) as the order of the multistep scheme
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Chapter 3

User files

3.1 Case set-up .usr
Each simulation is defined by three files, the .rea file, the .usr file, and the SIZE file. In addition,
there is a derived .map file that is generated from the .rea file by running genmap which will
determine how the elements will be split across processors in the case of a parallel run. SIZE
controls (at compile time) the polynomial degree used in the simulation, as well as the space
dimension d = 2 or 3.

The SESSION.NAME file contains the current run, it must provide the name of the .rea file
and the path to it. It does not however need to correspond to an .usr file of an identical name.
This allows for different test cases (.usr files) that use the same geometry and boundary conditions
(.rea files).

This chapter provides an introduction to the basic files required to set up a Nek5000 simulation.

3.1.1 Contents of .usr file

The most important interface to Nek5000 is the set of Fortran subroutines that are contained in the
.usr file. This file allows direct access to all runtime variables. Here, the user may specify spatially
varying properties (e.g., viscosity), volumetric heating sources, body forces, and so forth. One can
also specify arbitrary initial and boundary conditions through the routines useric() and userbc().
The routine userchk() allows the user to interrogate the solution at the end of each timestep for
diagnostic purposes. The .usr files provided in the /examples/... directories illustrate several
of the more common analysis tools. For instance, there are utilities for computing the time average
of u, u2, etc. so that one can analyze mean and rms distributions with the postprocessor. There
are routines for computing the vorticity or the scalar λ2 for vortex identification, and so forth.

Routines in .usr file

The routine uservp specifies the variable properties of the governing equations. This routine is
called once per processor, and once per discrete point therein.

14



Equation udiff utrans ifield

Momentum Eq.1.1 ρ µ 1
Energy Eq.1.4 ρcp k 2
Passive scalar Eq.1.6 (ρcp)i ki i-1

subroutine uservp (ix ,iy ,iz ,eg)
include ’SIZE ’
include ’TOTAL ’
include ’NEKUSE ’

integer iel
iel = gllel(eg)

udiff =0.
utrans =0.

return
end

The routine userdat is called right after the geometry is loaded into NEK5000 and prior to the
distribution of the GLL points. This routine is called once per processor but for all the data on
that processor. At this stage the elements can be modified as long as the topology is preserved. It
is also possible to alter the type of boundary condition that is initially attributed in the .rea file,
as illustrated below (the array cbc(face,iel,field) contains the boundary conditions per face
and field of each element). Note the spacing allocated to each BC string is of three units.

subroutine usrdat
include ’SIZE ’
include ’TOTAL ’
include ’NEKUSE ’
integer iel ,f

do iel =1, nelt ! Force flux BCs
do f=1 ,2* ndim

if (cbc(f,iel ,1). eq.’W ’) cbc(f,iel ,2) = ’f ’ ! flux BC for temperature
enddo
enddo

return
end

The routine usrdat2 is called after the GLL points were distributed and allows at this point
only for affine transformations of the geometry.

subroutine usrdat2
include ’SIZE ’
include ’TOTAL ’

return
end

The routine userf is called once for each point and provides the force term in Eq.??. Not that
according to the dimensionalization in Eq.?? the force term f is in fact multiplied by the density ρ.

subroutine userf (ix ,iy ,iz ,eg)
include ’SIZE ’
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include ’TOTAL ’
include ’NEKUSE ’

ffx = 0.0
ffy = 0.0
ffz = 0.0

return
end

Similarly to userf the routine userq provides the force term in Eq.1.4 and the subsequent
passive scalar equations according to Eq.1.6.

subroutine userq (ix ,iy ,iz ,eg)
include ’SIZE ’
include ’TOTAL ’
include ’NEKUSE ’

qvol = 0.

return
end

The boundary conditions are assigned in userbc for both the fluid, temperature and all other
scalars. An extensive list of such possible boundary conditions is available in Section. ??.

subroutine userbc (ix ,iy ,iz ,iside ,ieg)
include ’SIZE ’
include ’TOTAL ’
include ’NEKUSE ’

ux =0.0
uy =0.0
uz =0.0
temp =0.0
flux = 1.0

return
end

Initial conditions are attributed in useric similarly to the boundary conditions
subroutine useric (ix ,iy ,iz ,ieg)
include ’SIZE ’
include ’TOTAL ’
include ’NEKUSE ’

uy =0.0
ux =0.0
uz =1.0

return
end

The routine userchk is called once per processor after each timestep (and once after the initializa-
tion is finished). This is the section where the solution can be interrogated and subsequent changes
can be made.
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Dimensional parameters Non-dimensional parameters
p1=ρ p1=1
p2=ν p2=1/Re (-Re)
p7=ρCp p7=1
p8=k p8=1/Pe (-Pe)

subroutine userchk
include ’SIZE ’
include ’TOTAL ’
include ’NEKUSE ’

call outpost (vx ,vy ,vz ,pr ,t,’ext ’)

return
end

The routine usrdat3 is not widely used, however it shares the same properties with usrdat2.
subroutine usrdat3
include ’SIZE ’
include ’TOTAL ’

c
return
end

Nek5000 can solve the dimensional or non-dimensional equations by setting the following pa-
rameters

alternatively the variable properties can be set in the USERVP routine.
What is a SESSION file?
To run NEK5000, each simulation must have a SESSION.NAME file. This file is read in by

the code and gives the path to the relevant files describing the structure and parameters of the
simulation. The SESSION.NAME file is a file that contains the name of the simulation and the
full path to supporting files. For example, to run the eddy example from the repository, the
SESSION.NAME file would look like:

eddy_uv\\
/homes/user\_ name/nek5\_ svn/examples/eddy/

3.2 Problem size file SIZE
The SIZE file defines the problem size, i.e. spatial points at which the solution is to be evaluated
within each element, number of elements per processor etc. The SIZE file governs the memory
allocation for most of the arrays in Nek5000, with the exception of those required by the C utilities.
The primary parameters of interest in SIZE are:

ldim = 2 or 3. This must be set to 2 for two-dimensional or axisymmetric simulations (the latter
only partially supported) or to 3 for three-dimensional simulations.

lx1 controls the polynomial order of the approximation, N=lx1-1.
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lxd controls the polynomial order of the integration for convective terms. Generally, lxd=3 *
lx1/2. On some platforms, however, it is important for memory access performance that lx1
and lxd be even.

lx2 = lx1 or lx1-2. This determines the formulation for the Navier-Stokes solver (i.e., the choice
between the lPN–lPN or lPN–lPN−2 methods) and the approximation order for the pressure,
lx2-1.

lelt determines the maximum number of elements per processor.

The total size of the problem is lx1*ly1*lz1*lelt.

3.2.1 Memory Requirements

Per-processor memory requirements for Nek5000 scale roughly as 400 8-byte words per allocated
gridpoint. The number of allocated gridpoints per processor is nmax=lx1*ly1*lz1*lelt. (For
3D, lz1=ly1=lx1; for 2D, lz1=1, ly1=lx1.) If required for a particular simulation, more memory
may be made available by using additional processors. For example, suppose one needed to run a
simulation with 6000 elements of order N = 9. To leading order, the total memory requirements
would be ≈ E(N + 1)3 points × 400 (wds/pt) × 8 bytes/wd = 6000 ×103 × 400× 8= 19.2
GB. Assuming there is 400 MB of memory per core available to the user (after accounting for
OS requirements), then one could run this simulation with P ≥ 19, 200 MB /(400MB/proc) = 48
processors. To do so, it would be necessary to set lelt ≥ 6000/48 = 125.

We note two other parameters of interest in the parallel context:

lp, the maximum number of processors that can be used.

lelg, an upper bound on the number of elements in the simulation.

There is a slight memory penalty associated with these variables, so one generally does not want
to have them excessively large. It is common, however, to have lp be as large as anticipated for
a given case so that the executable can be run without recompiling on any admissible number of
processors (Pmem ≤ P ≤ E, where Pmem is the value computed above).

3.3 Geometry and Parameters file .rea
The .rea file consists of several sections:

Parameters and logical switches

parameters These control the runtime parameters such as viscosity, conductivity, number of
steps, timestep size, order of the timestepping, frequency of output, iteration tolerances, flow
rate, filter strength, etc. There are also a number of free parameters that the user can use as
handles to be passed into the user defined routines in the .usr file.

passive scalar data This information can be specified also in the .uservp routine in the .usr
file. If specified in the .rea file then the coefficients for the conductivity term are listed in
ascending order for passive scalars ranging 1..9 followed by the values for the ρcp coefficients.
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Face {1,2,3,4}
x1,...,4 = 0.000000E+00 0.171820E+00 0.146403E+00 0.000000E+00
y1,...,4 = 0.190000E+00 0.168202E+00 0.343640E+00 0.380000E+00
z1,...,4 = 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
Face {5,6,7,8}
x5,...,8 = 0.000000E+00 0.171820E+00 0.146403E+00 0.000000E+00
y5,...,8 = 0.190000E+00 0.168202E+00 0.343640E+00 0.380000E+00
z5,...,8 = 0.250000E+00 0.250000E+00 0.250000E+00 0.250000E+00

(a) Descriptor

Table 3.1: Geometry description in .rea file

4 Lines of passive scalar data follows 2 CONDUCT; 2 RHOCP
1.00000 1.00000 1.00000 1.00000 1.00000
1.00000 1.00000 1.00000 1.00000
1.00000 1.00000 1.00000 1.00000 1.00000
1.00000 1.00000 1.00000 1.00000

logicals These determine whether one is computing a steady or unsteady solution, whether ad-
vection is turned on, etc.

Mesh and boundary condition info

geometry The geometry is specified in an arcane format specifying the xyz locations of each
of the eight points for each element, or the xy locations of each of the four points for each
element in 2D. A line of the following type may be encountered at the beginning of the mesh
section of the area file.

3.33333 3.33333 -0.833333 -1.16667 XFAC,YFAC,XZERO,YZERO

This part is to be read by PRENEK and provides the origin of the system of coordinates
XZERO;YZERO as well as the size of the cartesian units XFAC;YFAC. This one line has no
impact on the mesh as being read in NEK.
The header of the mesh data may have the following representation

**MESH DATA** 6 lines are X,Y,Z;X,Y,Z. Columns corners 1-4;5-8
226 3 192 NEL,NDIM,NELV

ELEMENT 1 [ 1A] GROUP 0

The header states first how many elements are available in total (226), what dimension is the
the problem (here three dimensional), and how many elements are in the flow mesh (192).

curvature This section describes the deformation for elements that are curved. Currently-
supported curved side or edge definitions include “C” for circles, “s” for spheres, and “m”
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Figure 3.1: Geometry description in .rea file (sketch of one element ordering)

for midside-node positions associated with quadratic edge displacement. If no curved data is
available the section remains empty. Example
The section header may look like this

640 Curved sides follow IEDGE,IEL,CURVE(I),I=1,5, CCURVE

and the data is stored as follows

IEDGE IEL CURVE(12,1,IEL) CURVE(12,2..5,IEL) CCURVE(12,IEL)

3 1 1.0000 0.0000 C
7 1 1.0000 0.0000 C

The array CCURVE (char curve) holds a character denoting the type of curved boundary, while
the array CURVE holds the actual information about the curved boundary. There are up to
five available components in the CURVE array in case more information is needed by other
implementations, that do not represent the default. We may have

• ’C’ stands for circle and is given by the radius of the circle, thus filling in only the first
component of the CURVE(12,1,NEL)

• ’S’ stands for sphere and is given by the radius and the center of the sphere, thus filling
the first 4 components of the CURVE(12,1...4,NEL)

• ’M’ is given by the coordinates of the midside-node, thus filling the first 3 components
of the CURVE(12,1...3,NEL), and leads to a second order reconstruction of the face.

Both ’C’ and ’S’ types allow for a surface of as high order as the polynomial used in the
spectral method, since they have an underlying analytical description, any circle arc can be
fully determined by the radius and end points. However for the ’M’ curved element descriptor
the surface can be reconstructed only up to second order. This can be later updated to match
the high-order polynomial after the GLL points have been distributed across the boundaries.
In .usrdat2 the user can move the geometry to match the intended surface, followed by a
call to the subroutine ’fixgeom’ which can realign the point distribution in the interior of the
element.

boundary conditions Boundary conditions (BCs) are specified for each face of each element,
for each field (velocity, temperature, passive scalar #1, etc.). A common BC is P, which
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indicates that an element face is connected to another element to establish a periodic BC.
Many of the BCs support either a constant specification or a user defined specification which
may be an arbitrary function. For example, a constant Dirichlet BC for velocity is specified by
V, while a user defined BC is specified by v. This upper/lower-case distinction is used for all
cases. There are about 70 different types of boundary conditions in all, including free-surface,
moving boundary, heat flux, convective cooling, etc.
The section header may look like this

***** FLUID BOUNDARY CONDITIONS *****

and the data is stored as follows

CBC IEL IEDGE CONN-IEL CONN-IEDGE redundant
E 1 1 4.00000 3.00000 0.00000
.. .. .. .. .. ..
W 5 3 0.00000 0.00000 0.00000
.. .. .. .. .. ..
P 5 5 149.000 6.00000 0.00000

Output info

restart conditions
Here, one can specify a file to use as an initial condition. The initial condition need not be of
the same polynomial order as the current simulation. One can also specify that, for example,
the velocity is to come from one file and the temperature from another. The initial time is
taken from the last specified restart file, but this can be overridden.

History points
The following section defines history points in the .rea file, see example vortex/r1854a.rea,
or shear4/shear4.rea

0 PACKETS OF DATA FOLLOW\\
***** HISTORY AND INTEGRAL DATA *****\\

56 POINTS. H code, I,J,H,IEL \\
UVWP H 31 31 1 6\\
UVWP H 31 31 31 6\\
UVWP H 31 31 31 54\\
" " " " " "\\

The "56 POINTS" line needs to be followed by 56 lines of the type shown. However, in each
of the following lines, which have the UVWP etc., location is CRUCIAL, it must be layed out
exactly as indicated above1, it is therefore advisable to refer to the examples vortex, shear4.
If you want to pick points close to the center of element 1 and are running with lx1=10, say,
you might choose UVWP H 5 5 5 1. 2

1these lines contain character strings, they use formatted reads
2the indicated point would really be at the middle of the element only if lx1=9

21



The UVWP tells the code to write the 3 velocity components and pressure to the .sch file at
each timestep (or, more precisely, whenever mod(istep,iohis)=0, where iohis=param(52)).
Note that if you have more than one history point then they are written sequentially at each
timestep. Thus 10 steps in the first example with param(52)=2 would write (10/2)*56 =
280 lines to the .sch file, with 4 entries per line. The "H" indicates that the entry corresponds
to a requested history point. A note of caution: if the ijk values (5 5 5 in the preceding
example line) exceed lx1,ly1,lz1 of your SIZE file, then they are truncated to that value.
For example, if lx1=10 for the data at the top (31 31 31) then the code will use ijk of (10
10 10), plus the given element number, in identifying the history point. It is often useful to
set ijk to large values (i.e., > lx1) because the endpoints of the spectral element mesh are
invariant when lx1 is changed.

output specifications Outputs are discussed in a separate section below.

It is important to note that Nek5000 currently supports two input file formats, ascii and binary.
The .rea file format described above is ascii. For the binary format, all sections of the .rea file
having storage requirements that scale with number of elements (i.e., geometry, curvature, and
boundary conditions) are moved to a second, .re2, file and written in binary. The remaining
sections continue to reside in the .rea file. The distinction between the ascii and binary formats is
indicated in the .rea file by having a negative number of elements. There are converters, reatore2
and re2torea, in the Nek5000 tools directory to change between formats. The binary file format is
the default and important for I/O performance when the number of elements is large ( > 100000,
say).

3.4 Data Layout
Nek5000 was designed with two principal performance criteria in mind, namely, single-node perfor-
mance and parallel performance.

A key precept in obtaining good single node performance was to use, wherever possible, unit-
stride memory addressing, which is realized by using contiguously declared arrays and then accessing
the data in the correct order. Data locality is thus central to good serial performance. To ensure
that this performance is not compromised in parallel, the parallel message-passing data model is
used, in which each processor has its own local (private) address space. Parallel data, therefore, is
laid out just as in the serial case, save that there are multiple copies of the arrays—one per processor,
each containing different data. Unlike the shared memory model, this distributed memory model
makes data locality transparent and thus simplifies the task of analyzing and optimizing parallel
performance.

Some fundamentals of Nek5000’s internal data layout are given below.

[1] Data is laid out as ueijk = u(i, j, k, e)

i=1,...,nx1 (nx1 = lx1)
j=1,...,ny1 (ny1 = lx1)
k=1,...,nz1 (nz1 = lx1 or 1, according to ndim=3 or 2)
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e=1,...,nelv, where nelv ≤ lelv, and lelv is the upper bound on number of elements, per
processor.

[2] Fortran data is stored in column major order (opposite of C).

[3] All data arrays are thus contiguous, even when nelv < lelv

[4] Data accesses are thus primarily unit-stride (see chap.8 of DFM for importance of this point),
and in particular, all data on a given processor can be accessed as, e.g.,

do i=1,nx1*ny1*nz1*nelv
u(i,1,1,1) = vx(i,1,1,1)

enddo

which is equivalent but superior (WHY?) to:

do e=1,nelv
do k=1,nz1
do j=1,ny1
do i=1,nx1

u(i,j,k,e) = vx(i,j,k,e)
enddo
enddo
enddo
enddo

which is equivalent but vastly superior (WHY?) to:

do i=1,nx1
do j=1,ny1
do k=1,nz1
do e=1,nelv

u(i,j,k,e) = vx(i,j,k,e)
enddo
enddo
enddo
enddo

[5] All data arrays are stored according to the SPMD programming model, in which address
spaces that are local to each processor are private — not accessible to other processors except
through interprocessor data-transfer (i.e., message passing). Thus

do i=1,nx1*ny1*nz1*nelv
u(i,1,1,1) = vx(i,1,1,1)

enddo
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means different things on different processors and nelv may differ from one processor to the
next. (By at most 1, WHY ?)

[6] For the most part, low-level loops such as above are expressed in higher level routines only
through subroutine calls, e.g.,:

call copy(u,vx,n)

where n:=nx1*ny1*nz1*nelv. Notable exceptions are in places where performance is critical,
e.g., in the middle of certain iterative solvers.
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Chapter 4

Geometry

The domain in which the fluid flow/heat transfer problem is solved consists of two distinct sub-
domains. The first subdomain is that part of the region occupied by fluid, denoted Ωf , while the
second subdomain is that part of the region occupied by a solid, denoted Ωs. These two subdomains
are depicted in Fig. 1.1. The entire domain is denoted as D = Ωf ∪Ωs. The fluid problem is solved
in the domain Ωf , while the temperature in the energy equation is solved in the entire domain; the
passive scalars can be solved in either the fluid or the entire domain.

We denote the entire boundary of Ωf as ∂Ωf , that part of the boundary of Ωf which is not
shared by Ωs as ∂Ωf , and that part of the boundary of Ωf which is shared by Ωs. In addition,
∂Ωs, ∂Ωs are analogously defined. These distinct portions of the domain boundary are illustrated
in Fig.1.1. The restrictions on the domain for Nek5000 are itemized below.

• The domain Ω = Ωf ∪ Ωs must correspond either to a planar (Cartesian) two-dimensional
geometry, or to the cross-section of an axisymmetric region specified by revolution of the
cross-section about a specified axis, or by a (Cartesian) three-dimensional geometry.

• For two-dimensional and axisymmetric geometries, the boundaries of both subdomains, ∂Ωf

and ∂Ωs, must be representable as (or at least approximated by) the union of straight line
segments, splines, or circular arcs.

• Nek5000 can interpret a two-dimensional image as either a planar Cartesian geometry, or
the cross-section of an axisymmetric body. In the case of the latter, it is assumed that
the y-direction is the radial direction, that is, the axis of revolution is at y=0. Although
an axisymmetric geometry is, in fact, three-dimensional, Nek5000 can assume that the field
variables are also axisymmetric ( that is, do not depend on azimuth, but only y, that is,
radius, x, and t ), thus reducing the relevant equations to "two-dimensional" form.

Fully general three-dimensional meshes generated by other softwares packages can be input to
PRENEK as import meshes.

4.0.1 Moving Geometry

If the imposed boundary conditions allow for motion of the boundary during the solution period
(for example, moving walls, free-surfaces, melting fronts, fluid layers), then the geometry of the
computational domain is automatically considered in Nek5000 as being time-dependent.
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For time-dependent geometry problems, a mesh velocity w is defined at each collocation point
of the computational domain (mesh) to characterize the deformation of the mesh. In the solution
of the mesh velocity, the value of the mesh velocity at the moving boundaries is first computed
using appropriate kinematic conditions (for free-surfaces, moving walls and fluid layers) or dynamic
conditions (for melting fronts). On all other external boundaries, the normal mesh velocity on the
boundary is always set to zero. In the tangential direction, either a zero tangential velocity condi-
tion or a zero tangential traction condition is imposed; this selection is automatically performed by
Nek5000 based on the fluid and/or thermal boundary conditions specified on the boundary. How-
ever, under special circumstances the user may want to override the defaults set by Nek5000, this is
described in the PRENEK manual in Section 5.7.1 If the zero tangential mesh velocity is imposed,
then the mesh is fixed in space; if the zero traction condition is imposed, then the mesh can slide
along the tangential directions on the boundary. The resulting boundary-value-problem for the
mesh velocity is solved in Nek5000 using a elastostatic solver, with the Poisson ratio typically set
to zero. The new mesh geometry is then computed by integrating the mesh velocity explicitly in
time and updating the nodal coordinates of the collocation points.

Note that the number of macro-elements, the order of the macro-elements and the topology of
the mesh remain unchanged even though the geometry is time-dependent. The use of an arbitrary-
Lagrangian-Eulerian description in Nek5000 ensures that the moving fronts are tracked with the
minimum amount of mesh distortion; in addition, the elastostatic mesh solver can handle moder-
ately large mesh distortion. However, it is the responsibility of the user to decide when a mesh
would become "too deformed" and thus requires remeshing. The execution of the program will ter-
minate when the mesh becomes unacceptable, that is, a one-to-one mapping between the physical
coordinates and the isoparametric local coordinates for any macro-element no longer exists. Note
that in case of any changes in the SIZE file, a recompilation is necessary.

4.1 Setting up the geometry

4.1.1 Rectangular geometries

4.1.2 Uniformly Distributed Mesh

Suppose you wish to simulate flow through an axisymmetric pipe, of radius R = 0.5 and length
L = 4. You estimate that you will need 3 elements in radial (y) direction, and 5 in the x direction,
as depicted in Fig. 4.3. This would be specified by the following input file (called pipe.box) to
genbox:

axisymmetric.rea
2 spatial dimension
1 number of fields
#
# comments: This is the box immediately behind the
# refined cylinder in Ugo’s cyl+b.l. run.
#
#

1This manual is old may soon be deprecated
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Figure 4.1: Axisymmteric pipe mesh

#========================================================
#
Box 1 Pipe
-5 -3 Nelx Nely
0.0 4.0 1.0 x0 x1 ratio
0.0 0.5 1.0 y0 y1 ratio
v ,O ,A ,W , , BC’s: (cbx0, cbx1, cby0, cby1, cbz0, cbz1)

• The first line of this file supplies the name of an existing 2D .rea file that has the appropriate
run parameters (viscosity, timestep size, etc.). These parameters can be modified later, but
it is important that axisymmetric.rea be a 2D file, and not a 3D file.

• The second line indicates the number of fields for this simulation, in this case, just 1, corre-
sponding to the velocity field (i.e., no heat transfer).

• The next set of lines just shows how one can place comments into a genbox input file.

• The line that starts with “Box” indicates that a new box is starting, and that the following
lines describe a typical box input. Other possible key characters (the first character of Box,
“B”) are “C” and “M”, more on those later.

• The first line after “Box” specifies the number of elements in the x and y directions. The fact
that these values are negative indicates that you want genbox to automatically generate the
element distribution along each axis, rather than providing it by hand. (More on this below.)

• The next line specifies the distribution of the 5 elements in the x direction. The mesh starts
at x = 0 and ends at x = 4.0. The ratio indicates the relative size of each element, progressing
from left to right. Here,

• The next line specifies the distribution of the 3 elements in the y direction, starting at y = 0
and going to y = 0.5. Again, ratio=1.0 indicates that the elements will be of uniform height.

• The last line specifies boundary conditions on each of the 4 sides of the box:

– Lower-case v indicates that the left (x) boundary is to be a velocity boundary condition,
with a user-specified distribution determined by routine userbc in the .usr file. (Upper-
case V would indicate that the velocity is constant, with values specified in the .rea
file.)

– O indicates that the right (x) boundary is an outflow boundary – the flow leaves the
domain at the left and the default exit pressure is p = 0.
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Figure 4.2: Axisymmteric pipe mesh, graded

Figure 4.3: Axisymmteric pipe mesh, user specified

– A indicates that the lower (y) boundary is the axis—this condition is mandatory for the
axisymmetric case, given the fact that the lower domain boundary is at y = 0, which
corresponds to r = 0.

– W indicates that the upper (y) boundary is a wall. This would be equivalent to a v or
V boundary condition, with u = 0.

4.1.3 Graded Mesh

Suppose you wish to have the mesh be graded, that you have increased resolution near the wall. In
this case you change ratio in the y-specification of the element distribution. For example, changing
the 3 lines in the above genbox input file from

-5 -3 Nelx Nely
0.0 4.0 1.0 x0 x1 ratio
0.0 0.5 1.0 y0 y1 ratio

to

-5 -4 Nelx Nely
0.0 4.0 1.0 x0 x1 ratio
0.0 0.5 0.7 y0 y1 ratio

yields the mesh shown in Fig. 4.2.

4.1.4 User-Specified Distribution

You can also specify your own, precise, distribution of element locations. For example, another
graded mesh similar to the one of the preceding example could be built by changing the genbox
input file to contain:

-5 4 Nelx Nely
0.0 4.0 1.0 x0 x1 ratio
0.000 0.250 0.375 0.450 0.500 y0 y1 ... y4
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Here, the positive number of elements for the y direction indicates that genbox is expecting Nely+1
values of y positions on the y-element distribution line. This is the genbox default, which explains
why it corresponds to Nely > 0. The corresponding mesh is shown in Fig. ??.

4.1.5 Mesh Modification in Nek5000

For complex shapes, it is often convenient to modify the mesh direction in the simulation code,
Nek5000. This can be done through the usrdat2 routine provided in the .usr file. The routine usr-
dat2 is called by nek5000 immediately after the geometry, as specified by the .rea file, is established.
Thus, one can use the existing geometry to map to a new geometry of interest.

For example, suppose you want the above pipe geometry to have a sinusoidal wall. Let x :=
(x, y) denote the old geometry, and x′ := (x′, y′) denote the new geometry. For a domain with
y ∈ [0, 0.5], the following function will map the straight pipe geometry to a wavy wall with amplitude
A, wavelength λ:

y′(x, y) = y + yA sin(2πx/λ).

Note that, as y −→ 0, the perturbation, yA sin(2πx/λ), goes to zero. So, near the axis, the mesh
recovers its original form.

In nek5000, you would specify this through usrdat2 as follows

subroutine usrdat2
include ’SIZE’
include ’TOTAL’

real lambda

ntot = nx1*ny1*nz1*nelt

lambda = 3.
A = 0.1

do i=1,ntot
argx = 2*pi*xm1(i,1,1,1)/lambda
ym1(i,1,1,1) = ym1(i,1,1,1) + ym1(i,1,1,1)*A*sin(argx)

enddo

param(59) = 1. ! Force nek5 to recognize element deformation.

return
end

Note that, since nek5000 is modifying the mesh, postx will not recognize the current mesh unless
you tell it to, because postx looks to the .rea file for the mesh geometry. The only way for nek5000
to communicate the new mesh to postx is via the .fld file, so you must request that the geometry
be dumped to the .fld file. This is done by modifying the OUTPUT SPECIFICATIONS, which are
found near the bottom of the .rea file. Specifically, change
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Figure 4.4: Axisymmteric pipe mesh

***** OUTPUT FIELD SPECIFICATION *****
6 SPECIFICATIONS FOLLOW
F COORDINATES
T VELOCITY
T PRESSURE
T TEMPERATURE
F TEMPERATURE GRADIENT
0 PASSIVE SCALARS

to

***** OUTPUT FIELD SPECIFICATION *****
6 SPECIFICATIONS FOLLOW
T COORDINATES <------ CHANGE HERE
T VELOCITY
T PRESSURE
T TEMPERATURE
F TEMPERATURE GRADIENT
0 PASSIVE SCALARS

The result of above changes is shown in Fig. 4.4.

4.1.6 Cylindrical/Cartesian-transition Annuli

An updated version of genb6, known as genb7, is currently under development and designed to
simply/automate the construction of cylindrical annuli, including basic transition-to-Cartesian el-
ements. More sophisticated transition treatments may be generated using the GLOBAL REFINE
options in prenek or through an upgrade of genb7, as demand warrants. Example 2D and 3D input
files are provided in the nek5000/doc files box7.2d and box7.3d. Figure 4.5a shows a 2D example
generated using the box7.2d input file, which reads:

x2d.rea
2 spatial dimension
1 number of fields
#
# comments
#
#
#========================================================
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(a) Annuli mesh (b) Annuli mesh

Figure 4.5: Cylinder mesh

#
Y cYlinder
3 -24 1 nelr,nel_theta,nelz
.5 .3 x0,y0 - center of cylinder
ccbb descriptors: c-cyl, o-oct, b-box (1 character + space)
.5 .55 .7 .8 r0 r1 ... r_nelr
0 1 1 theta0/2pi theta1/2pi ratio
v ,W ,E ,E , bc’s (3 characters + comma)

An example of a mesh is shown in Fig. 4.5a. The mesh has been quad-refined once with oct-
refine option of prenek. The 3D counterpart to this mesh could joined to a hemisphere/Cartesian
transition built with the spherical mesh option in prenek.

4.2 Extrusion/Mirroring

4.2.1 Building Extruded Meshes with n2to3

In nek5000/tools, there is a code n2to3.f that can be compiled with your local fortran compiler
(preferably not g77). By running this code, you can extend two dimensional domains to three
dimensional ones with a user-specified number of levels in the z-direction. Such a mesh can then
be modified using the mesh modification approach. Assuming you have a valid two-dimensional
mesh, n2to3 is straightforward to run. Below is a typical session, upon typing n2to3 the user is
prompted at the command line

Input old (source) file name:
h2e
Input new (output) file name:

h3e
input number of levels: (1, 2, 3,... etc.?):

16
input z min:
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0
input z max:

16
input gain (0=custom,1=uniform,other=geometric spacing):

1
This is for CEM: yes or no:

n
Enter Z (5) boundary condition (P,v,O):

v
Enter Z (6) boundary condition (v,O):

0
this is cbz: v O <---

320 elements written to h3e.rea
FORTRAN STOP

In this context CEM stands for computational electromagnetics, a spin-off of the original
Nek5000 code.

4.3 Boundary and initial conditions
The open(outflow) boundary condition ("O") arises as a natural boundary condition from the

variational formulation of Navier Stokes. We identify two situations

• In the non-stress formulation, open boundary condition (’Do nothing’)

[−pI + ν(∇u)] · n = 0 (4.1)

• In the stress formulation, free traction boundary condition

[−pI + ν(∇u +∇uT )] · n = 0 (4.2)

• the symmetric boundary condition ("SYM") is given as

u · n = 0 , (4.3)
(∇u · t) · n = 0 (4.4)

where n is the normal vector and t the tangent vector. If the normal and tangent vector are
not aligned with the mesh the stress formulation has to be used.

• the periodic boundary condition ("P") needs to be prescribed in the .rea file since it already
assigns the last point to first via u(x) = u(x + L), where L is the periodic length.

• the wall boundary condition ("W") corresponds to u = 0.
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4.3.1 Internal Boundary Conditions

In the spatial discretization, the entire computational domain is subdivided into macro-elements,
the boundary segments shared by any two of these macro-elements in Ωf and Ωs are denoted as
internal boundaries. For fluid flow analysis with a single-fluid system or heat transfer analysis
without change-of-phase, internal boundary conditions are irrelevant as the corresponding field
variables on these segments are part of the solution. However, for a multi-fluid system and for
heat transfer analysis with change-of-phase, special conditions are required at particular internal
boundaries, as described in the following.

For a fluid system composes of multiple immiscible fluids, the boundary (and hence the identity)
of each fluid must be tracked, and a jump in the normal traction exists at the fluid-fluid interface
if the surface tension coefficient is nonzero. For this purpose, the interface between any two fluids
of different identity must be defined as a special type of internal boundary, namely, a fluid layer;
and the associated surface tension coefficient also needs to be specified.

In a heat transfer analysis with change-of-phase, Nek5000 assumes that both phases exist at the
start of the solution, and that all solid-liquid interfaces are specified as special internal boundaries,
namely, the melting fronts. If the fluid flow problem is considered, i.e., the energy equation is solved
in conjunction with the momentum and continuity equations, then only the common boundary
between the fluid and the solid (i.e., all or portion of ∂Ω′f in Fig. 1.1) can be defined as the melting
front. In this case, segments on ∂Ω′f that belong to the dynamic melting/freezing interface need to
be specified by the user. Nek5000 always assumes that the density of the two phases are the same
(i.e., no Stefan flow); therefore at the melting front, the boundary condition for the fluid velocity is
the same as that for a stationary wall, that is, all velocity components are zero. If no fluid flow is
considered, i.e., only the energy equation is solved, then any internal boundary can be defined as a
melting front. The temperature boundary condition at the melting front corresponds to a Dirichlet
condition; that is, the entire segment maintains a constant temperature equal to the user-specified
melting temperature Tmelt throughout the solution. In addition, the volumetric latent heat of fusion
ρL for the two phases, which is also assumed to be constant, should be specified.

4.3.2 Initial Conditions

For time-dependent problems Nek5000 allows the user to choose among the following types of initial
conditions for the velocity, temperature and passive scalars:

• Zero initial conditions: default; if nothing is specified.

• Fortran function: This option allows the user to specify the initial condition as a fortran
function, e.g., as a function of x, y and z.

• Presolv: For a temperature problem the presolv option gives the steady conduction solution
as initial condition for the temperature. For a fluid problem this option can give the steady
Stokes solution as the initial condition for the velocity provided that the classical splitting
scheme is not used.

• Restart: this option allows the user to read in results from an earlier simulation, and use
these as initial conditions.

A tabulated summary of the compatibility of these initial condition options with various other
solution strategies/parameters is given in the appendix.
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Figure 4.6: Two-dimensional mesh

4.4 Mesh Partioning for Parallel Computing
Genmap is spectral graph partitioning tool, similar to e.g. METIS, which partitions the graph
associated to the mesh to assure optimal communication time in HPC applications. Let us consider
a simple mesh such as the one in Fig. 4.6. The vertices are distributed in a random fashion, which
is the way they may be provided by some mesh generator. Let us assume the vertices are here
given as

V1 = (−1, 0), V2 = (0, 1), V3 = (−1, 2), V4 = (−1, 1), V5 = (0, 2), V6 = (0, 0), V7 = (1, 1), V8 = (1, 0)

The geometry is already stored in the .rea file by the point coordinates, and not vertex numbers
Element 1 = [V1 V6 V2 V4]

x1,...,4 = -1. 0. 0. -1.
y1,...,4 = 0. 0. 1. 1.

Element 2 = [V8 V7 V2 V6]
x1,...,4 = 1. 1. 0. 0.
y1,...,4 = 0. 1. 1. 0.

Element 3 = [V5 V3 V4 V2]
x1,...,4 = 0. -1. -1. 0.
y1,...,4 = 2 . 2. 1. 1.

Let us a regard the mesh in Fig. 4.6 as a graph of N vertices and M edges, G(VN , EM ). We
define the Laplacian matrix associated to a graph G as L(G). We define as the degree of a node Vi
the number of incident edges, e.g. in Fig. 4.6 deg(V2) = 4 and deg(V6) = 3.

L(G)ij =
{
i = j deg(Vi)
i 6= j −1 if there is and edge (i,j) and 0 otherwise (4.5)

L(G) =



1 2 3 4 5 6 7 8
1| 2 0 0 −1 0 −1 0 0
2| 0 4 0 −1 −1 −1 −1 0
3| 0 0 2 −1 −1 0 0 0
4| −1 −1 −1 3 0 0 0 0
5| 0 −1 −1 0 2 0 0 0
6| −1 −1 0 0 0 3 0 −1
7| 0 −1 0 0 0 0 2 −1
8| 0 0 0 0 0 −1 −1 2


(4.6)
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Properties of L(G)

• L(G) symmetric

• the unit vector e = [1, . . . 1] ∈ N (L(G)) is in the nullspace of the Laplacian matrix

• ∀λ ∈ σ(L(G) > 0, i.e. all the eigenvalues of L(G) are positive except λ0 corresponding to the
unit vector

• λ2 6= 0 if the graph is connected, λ2(L(G)) is also called the algebraic connectivity of the
graph

The main ides of the spectral bisection algorithm is

compute $v_2$ eigenvector corresponding to $\lambda_2(L(G))$
for i=1,N

if v_2(i) < 0 put vertex $V_i$ in N_{-}
else put vertex $V_i$ in N_{-}

The eigenvectors and eigenvalues are computed using Lanczos’s algorithm. These steps are
repeated recursively on each of the two branches of the graph N−, N+. This is possible since
according to Fiedler’s theorems the graph N− is connected, N+ connected only if no v2(i) = 0, and
for each subgraph G1 the algebraic connectivities satisfy λ2(L(G1)) ≤ λ2(L(G)).

To run the genmap code be sure that the Nek tools are up-to-date and compiled. At com-
mand line type: genmap NOTE-If the executables for the tools were not placed in the bin direc-
tory(default), include the path to the genmap executable. We give here the output for the .rea file
in the Kovasznay example

Input (.rea) file name:
kov
Input mesh tolerance (default 0.2):
NOTE: smaller is better, but generous is more forgiving for bad meshes.
0.05
reading .rea file data ...
start locglob_lexico: 8 960 7680 0.10000000000000001
locglob: 1 1 7680
.....
locglob: 3 1254 7680
done locglob_lexico: 1254 1254 7680 8
start periodic vtx: 960 1254
done periodic vtx
start rec_bisect: 960
done: 0.1%
.....
done: 99.4%

done rec_bisect
writing kov.map
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The user is prompted for .rea file name and should enter only the prefix of the .rea file. The user is
prompted for mesh tolerance value. Typically a value of .05 is sufficient. Increasing or decreasing
this value should make very little difference in the mesh generation. However, if given an error
from genmap, the tolerance may need to be made slightly more generous.

A successful genmap run will produce a .map file with the proper processor decomposition.
NOTE: For large element counts, it is not uncommon for genmap to be produce a few discon-

nected sets. These sets are typically under 7 elements large and will not affect optimization of
the NEK5000 run. If a disconnected set is produced, genmap will output the following warning to
stdout.

not connected N0 NEL Nsets Nlarge sets

Here, N0 is the number of elements disconnected from the set of NEL elements, Nsets is the counter
of disconnected sets found, and Nlarge sets is the number of sets greater than 64 elements in size.
Nlarge sets should always be 0. If not, please contact someone on the developer team so we can
be sure to have a more optimal partition of your mesh.

Genmap outputs an ordered set of numbers which are organized as follows Line number 1
contains the header nel, nactive, depth, d2, npts, nrank, noutflow

• nel number of elements

• nactive nrank-noutflow

• depth floor(log2(nel))

• d2 2depth

• npts number of corner points (nel*4 in 2D, nel*8 in 3D)

• nrank number of unique corner points

• noutflow number of outflows (not used anymore, is zero)

For the Kovasnay flow on an 8 element mesh with periodic boundary conditions we have 8 12
3 8 32 12 0

Next we have the data (one line per element, listed in order of global element number) ====
6 12 11 6 5

This means that elemnt one (since we are on the first line) belongs to group 6, and this element
is given by vertices in unique ordering. The vertices are ordered in symmetric ordering (starting at
1)

3 - 4 | | 1 - 2
To distribute amongst processors, one just takes as many consecutive processors as one wants.
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Chapter 5

Performing large scale simulations in
Nek5000

5.1 Large scale simulations
The largest simulations performed so far with Nek5000 are in the range of 5 × 106. Performance
aspects to keep in mind

• design your SEM-mesh for a polynomial order N=7 or N=9 (lx1 in SIZE)

• turn on dealiasing only if needed and try to minimize the polynomial order used for the fine
grid (lxd in SIZE)

• ensure that you have at least 50 elements per MPI process (the more the better)

• explore the pressure solver performance using AMG solver (sweet spot depends on number
of processors and elements)

• make sure usrchk() does not contain time consuming operations getting called in the time
loop

• enable tuned MxM implementation for your platform (see makenek options)1

• turn on residual projection scheme (see .rea file parameters)

• tune your pressure/velocity tolerances (e.g. use 5e-5 for pressure and 1e-8 for velocity solver)
having in mind your overall accuracy

• try to maximize the timestep, if needed turn on OIFS scheme with a target Courant number
of around 2.0

• use the parallel I/O (MPI-IO or custom kernel) to write checkpoints to disk

• understand where you spend most of the time - turn on solver and MPI timings to monitor
solver performance (see makenek options)

1don’t understand this
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In such context it is recommendable to save the .rea file as a binary re2.
Also for input/output it may be necessary to use MPI I/O. In this case the code has to be

compiled with MPI I/O, i.e. the line PPLIST="MPIIO" in the makefile should not be commented.
For output we may use iofiles, the parameter 65 in the .rea file specifies the number of directories
and separate files that have to be created as specified by the user.

For large scale simulations the AMG solver is a better, faster choice for solving the Poisson
problem (the default solver is XXT).

AMG solver The code should be compiled once with the settings AMG=true, AMG_ DUMP=true.
In the tools folder of Nek5000 we can find the AMG solver, a Matlab version for the moment which
is subject to further integration in the main code. The user should run the script run which will
read the AMG dump files and create new ones. The new files are now to be used in the code and
with AMG_ DUMP commented out the user should recompile and run his Nek5000 version.

The AMG solver is a 3 stage process.
The first step will generate the files needed for the matlab code. Next matlab must run the

setup code and generate a set of .dat files. Then nek can run with the .dat files and use the AMG
pressure solver.

AMG dump stage
Make sure IFAMG and IFAMG_ DUMP in makenek are uncommented and set to true Run makenek

clean, then makenek <casename> Run Nek (this will produce a set of *.dat files)
MATLAB AMG stage
Move the amgdmp_ *.dat files to nek5_ svn/trunk/tools/amg_ matlab:
mv amgdmp*.dat ../../trunk/tools/amg_ matlab
cd ../../trunk/tools/amg_ matlab
Run the script: tools/amg_ matlab/run (this may take several hours and will produce set of

files)
AMG run stage
Move all *.dat files produced back to your case directory:
mv *.dat /path/to/case/dir
Comment IFAMG_ DUMP in makenek (IFAMG should still be set to TRUE) Run makenek

clean, then run makenek <casename> Run Nek (the generated AMG files will be read during the
AMG setup phase)

Notes on improving AMG results:
To help speed up the matlab process, try running the 1st stage, the AMG dump stage, with

lx1=3 in the SIZE file. Using a lower lx1 number will create a sparser matrix and thus a speedier
matlab resolution. lx1 can be increased when ready to run the 2nd stage, the AMG run stage, after
the .dat files are produced.

To increase accuracy in the AMG results, try tightening the tolerances in the run script, in
trunk/tools/amg_ matlab. Specifically, the first tolerance (default set to 0.5). Lowering this (say,
to 0.1), will increase the time the matlab code stage takes, but the result will be a faster convergence
in the pressure solves of the AMG run stage.

Size related issues Large simulations require a high number of nodes and thus a high number
of variables. So far Nek5000 supports by default 4 byte integers, however the node numbering for
big meshes may exceed this size and 8 byte integers may be needed. How is this done?
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Table 5.1: Compiler options

name values default description
PPLIST string list of pre-processor symbols

(BG,MOAB,BLAS_ MXM, MPIIO)
IFMPI true,false true use MPI (needed for a multiprocessor

computation)
IFAMG_ DUMP true,false false dump AMG pre-processing files

IFAMG true,false false use AMG as coarse grid solver for pres-
sure preconditioner else XXT

F77 string mandatory Fortran compiler (e.g. MPI: mpif77)
CC string mandatory C compiler (e.g. MPI: mpicc)
G string optional optional compilation flags

OPT_ FLAGS_ STD7 string optional optimization flags for L1,L2,L3
OPT_ FLAGS_ MAG string optional optimization flags for L4 (highest opt

level)
SOURCE_ ROOT string mandatory path of nek5000 source

USR string optional object list of additional files to compile
(make intructions (makefile_ usr.inc
required)

USR_ LFLAGS string optional optional linking flags
MOAB_ DIR string NEK with MOAB Path to MOAB directories

IFVISIT true,false false Toggles Visit in situ. See Visit_ in_
situ for details

VISIT_ INSTALL string VISIT in situ Path to VISIT install path. See Visit_
in_ situ for details.

VISIT_ STOP true,false false When running VISIT in situ, simu-
lation stops after step 1 to connect
VISIT.

If more than 9 passive scalars are needed
Exiting Nek5000 while a batch job in being executed should be done not using "qdel" but echo

-1 > ioinfo.

MAKENEK The shell script makenek is designed to assist the compilation process of NEK5000.
The script will create a makefile based on the user settings section in makenek. The GNU gmake
utility is used to build NEK5000. Available configurations options:

Binary geometry Reatore2 Jump to: navigation, search
The NEK5000 tool, reatore2 allows users to split an ASCII .rea file to an ASCII .rea and a

binary .re2 file. The .re2 file contains the mesh and boundary condition data that is normally
written in ASCII in the .rea file. For large simulations, this information can be substantial, so
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storing it in binary lowers the memory footprint for the simulation. Running reatore2
Be sure that your nekton tools are up-to-date and compiled. At the command prompt type:

reatore2
NOTE-If the executables for the tools were not placed in the bin directory(default), include the

path to the reatore2 executable
User is prompted for name of .rea file
-Enter the name to the .rea file, excluding the .rea extenstion
User is prompted for the new files name
-Enter the name for your new files

5.2 Parallelism in Nek5000
The parallelism of Nek5000 is accomplished via domain decomposition methods and a suitable
gather-scatter code. All this is implemented in such way that the user does not have to be concerned
with the parallelism and only focus on the actual solvers while keepin in mind a few simple rules
and routines that switch from local to global and back.

• Locally, the SEM is structured.

• Globally, the SEM is unstructured.

• Vectorization and serial performance derive from the structured aspects of the computation.

• Parallelism and geometric flexibility derive from the unstructured, element-by-element, oper-
ator evaluation.

• Elements, or groups of elements are distributed across processors, but an element is never
subdivided.

For the most part, the global element numbering is not relevant since Nek5000 assigns it ran-
domly but following certain rules.

There are two types of array sizes, starting with lx1, lelv, etc. which give an upper bound of the
arrays. And nx1, nelv, etc. which give the actual number of elements/grid points per processors.
For the example in Fig. 5.1 we have

• on proc 0, nelt=2 (nelt = no elements in temperature domain)

• on proc 1, nelt=3 (nelv = no elements in fluid domain, usually = nelt)

Arrays lglel that distinguish which processor has which elements,

• on proc 0, nelt=2, lglel=(2,5), local element 1->2 and 2->5

• on proc 1, nelt=3, lglel=(1,3,4), local element 1->1, 2->3 and 4->3

Now for global to local we have two common arrays (scaling as nelgt, but only two such arrays)

• gllel=(1,1,2,3,2), assigns a global element to its local correspondent, i.e. global element
1->1, 2->1 and 3->2 etc.
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Figure 5.1: A simple SEM row of elements and a potential splitting

• gllnid=(1,0,1,1,0), assigns a global element to its processor, i.e. 1->1, 2->0 and 3->1 etc.

All data contiguously packed (and quad-aligned) real u(lx1,ly1,lz1,lelt) indicates that u
is a collection of elements, e=1,. . .,Nelt =< lelt, each of size (N + 1)d, d = 2or3.

Example: Summation
Serial version s = 0

do e=1,nelv
do iz=1,nz1
do iy=1,ny1
do ix=1,nx1
s=s+u(ix,iy,iz,e)
enddo,. . .,enddo

Second approach, serial version (works in parallel in Nek) n=nx1*ny1*nz1*nelv
s=0
do i=1,n
s=s+u(i,1,1,1)
enddo

Nek Parallel Version
s=glsum(s,n)
If you want a local max s=vlmax(u,n), or a global max s=glmax(u,n).
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Part II

Developer’s manual
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Chapter 6

Numerical methods

Here we shall present the Spectral Element Method starting with the variational formulation, the
emerging spatial discretization and close with the timestepping method. The core of the NEK5000
code is given by the robust solution to the Navier-Stokes equations via both an algebraic type of
solution (PN − PN−2), as well as via a splitting scheme (PN − PN ). However since the Navier-
Stokes equations can be regarded as a non-linear Convection-Diffusion equation with an additional
constraint (divergence free velocity field) enforced by the pressure gradient it is suitable to start
the presentation from a purely Convective-Diffusion equation and work our way towards the full
Navier-Stokes.

6.1 The Spectral Element Method
Let us define the spaces

L2(Ω) = {f : Ω→ R|
(∫

Ω
|f |2dΩ

)1/2
<∞, }

with the subset
H1

0 (Ω) = {f ∈ L2(Ω)| ∂f

∂x in L2(Ω), }

The Spectral Element Method is a subclass of Galerkin methods, or weighted residual methods.
The idea is to minimize the error of the numerical computation in the energy norm over a chosen
space of polynomials.

6.1.1 Convection-Diffusion

Consider the energy equation in non-dimensional form Eq. 1.5, this is a convection diffusion equation
with the Laplacian term weighted by the Péclet number. For the simplicity of the presentation we
make two changes

• replace the advection velocity u by a constant velocity field c that is divergence free

• denote the temperature T in the energy equation by u
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The variational formulation of the Convection-Diffusion equation reads∫
Ω

∂u

∂t
· vdΩ +

∫
Ω

(c · ∇u) · vdΩ = 1
Pe

∫
Ω

(∇ · ∇u) · vdΩ +
∫

Ω
f · vdΩ. (6.1)

with u, v ∈ H1
0 (Ω).

The terms in the convection diffusion equation can be further expanded to give∫
Ω

∂u

∂t
· vdΩ = ∂

∂t

∫
Ω
u · vdΩ (6.2)∫

Ω
∇ · ∇u · vdΩ =

∫
Ω
∇u · ∇vdΩ +

∫
∂Ω
v∇u · ndΩ (6.3)

Let us now define X = H1
0 (Ω)d. The space of polynomials of order N defined over an element

Ωe, e = 1, . . . , E is

PN,E = {φ|φ ∈ L2(Ω); φ|Ωepolynomial of degree ≤ N}

Subsequently XN = X ∩ P dN,E , where d is the dimension of the problem.
In the polynomial space XN we expand the numerical solution u =

∑N
i uiφi. With this choice

the solution as well as the test space function v can be expanded as

u(x) =
N∑
i=1

uiφi(x)

Given the choice of the polynomial space XN the boundary integral term in 6.2 vanishes. Upon
insertion of the ansatz into the variational formulation we have∫

Ω

∂u

∂t
· vdΩ = ∂

∂t

N∑
i

N∑
j

vi

(∫
Ω
φi(x) · φj(x)dΩuj

)
(6.4)

∫
Ω

(c · ∇u) · vdΩ =
N∑
i

N∑
j

vi

(∫
Ω

(c · φi(x) · ∇φj(x)dΩ
)
uj (6.5)

∫
Ω

(∇ · ∇u) · vdΩ =
N∑
i=1

N∑
j=1

vi(
∫

Ω
∇φi(x) · ∇φj(x)dΩ)uj (6.6)

(6.7)

To discretize the integrals in 6.4 we need to introduce a quadrature rule. For spectral accuracy
the choice is the Gauss-Legendre quadrature

∫ 1
−1 φ(x)dx =

∑
k ρkφ(xk) where the quadrature points

xk are given by the Gauss-Legendre-Lobatto points, and the weights ρk are based on the Legendre
polynomials as in ??. To start with we consider the one dimensional case and proceed to higher
dimensions and curvilinear elements.

One Dimensional case

Let us first regard a one dimensional case on the domain Ω = [a b] and analyse one by one the
terms in Eq. 6.4. Since the quadrature rule is defined on the interval [−1, 1] we map x ∈ Ω to
r ∈ [−1, 1] via x = a+ (b− a)(r + 1)/2 and take L = b− a. The mass matrix is given by

Mij =
∫

Ω
φi(x)φj(x)dΩ = L

2

∫ 1

−1
φi(r)φj(r)dr = L

2
∑
k

ρkφi(rk)φj(rk) (6.8)
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Table 6.1: Coefficients for the k-step backward-difference (bdfk) schemes with k ≤ 3. For a given
k, the coefficients are bj with 0 ≤ j ≤ k . The bdfk schemes have consistency order k.

bdfk
k b0 b1 b2 b3
1 1 −1
2 3

2 −4
2

1
2

3 11
6 −18

6
9
6 −2

6

since φi(xk)φj(xk) = δij , M is a diagonal matrix which holds on the diagonal the weights of the
quadrature rule. In practice M can also be used as an integration operator, therefore one can write∫ 1
−1 f(x)dx ≈Mf

The stiffness matrix corresponding to the second order term is

Aij =
∫

Ω
φ′i(x)φ′j(x)dΩ = L

2

∫ 1

−1
φ′i(r)φ′j(r)dr = L

2
∑
k

ρkφ
′
i(rk)φ′j(rk) (6.9)

and the convection operator

Cij =
∫

Ω
cφi(x)φ′j(x)dΩ = L

2

∫ 1

−1
c(r)φi(r)φ′j(r)dr = L

2
∑
k

c(rk)ρkφi(rk)φ′j(rk) (6.10)

This leads to the following spatial discretized system of equations

M
du

dt
= Au− Cu+Mf, (6.11)

6.2 Time discretization
Consider a general time dependent problem where the spatial operators are incorporated in the
generic L[·] subject to initial conditions given by u0.

∂u
∂t

= L[u], u(t0,x) = u0 (6.12)

The k-th order backward differentiation formula which approximates the time derivative ∂u/∂t
reads

k∑
j=0

bjun+1−j = ∆tL[un+1] (6.13)

Since the backward differentiation is an implicit scheme and thus more computationally de-
manding it can be preferable to remove the implicit behaviour for at least some of the terms of the
operator L[·]. The k-th order extrapolation formula reads

L[un+1] =
k∑
j=1

ajL[un+1−j ] (6.14)
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Table 6.2: Coefficients for the k-th order extrapolation (extk) schemes with k ≤ 3. For a given k,
the coefficients are aj with 1 ≤ j ≤ k . The extk schemes have consistency order k.

extk
k a1 a2 a3
1 1
2 2 −1
3 3 −3 1

In the code Nek5000 the coefficients for the timestepping are stored in exactly the same ordering
as above in arrays as follows

• BDF coefficients in BD

• EXT coefficients in AB

The routines makeabf and makebdf sum up the contributions of the lagged terms as needed on
the right hand side of Eqns. 6.14, 6.13.

6.3 Solving a Convection-Diffusion problem in Nek5000
Consider a SEM discretized higher order passive scalar given by an advection-diffusion equation.
Following Eq. ?? and assuming that any varaible coefficients are already account for insside the
discrete operators we have

M
du

dt
= Au− Cu+Mf, (6.15)

The equation is solved using an Implcit/Explicit scheme (IMEX), in this case BDF for the
implicit part and EXT for the explicit step, leading to

k∑
j=0

bj
∆tMun+1−j = Aun+1 − Cun+1 +Mfn+1 (6.16)

Which by extrapolation the convective term Cu and regrouping the terms leads to

b0
∆tMun+1 −Aun+1 = −

k∑
j=1

ajCun+1−j −
k∑
j=1

bj
∆tMun+1−j +Mfn+1 (6.17)

This leads to a simple Helmholtz system to solve

( b0∆tM −A)un+1 = −
k∑
j=1

ajCun+1−j −
k∑
j=1

bj
∆tMun+1−j +Mfn+1 (6.18)

In Nek5000 the convention for the forcing terms for passive scalars is to use the letter q. We
first build the right hand side in makeq as follows
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• makebdq sums the last two terms of the RHS (the lagged BDF terms and the forcing)

• makeabq add to the RHS the extrapolated convection term thus producing the final right
hand side

Next the Helmholtz problem is setup in conduct.f, more specifically in the routine cdscal.
To setup the Helmholtz problem the routine sethelm is called and the coeffcients are given as
H1u+H2u, in this case H2 = b0

∆tM and H1 = −A.
Last step is to solve the Helmholtz which is performed using hsolve.
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Chapter 7

Navier-Stokes discretizations

We shall state the variational formulation of the Navier–Stokes equations. This can be further
discretized using the same quadrature rule as for the energy equation Let us introduce a new space
for the pressure

L2
0(Ω) = {f ∈ L2(Ω)|

∫
Ω
fdΩ = 0, }

The Navier–Stokes equations governing the flow are

ρ(∂u
∂t

+ u · ∇u) = −∇p+∇ · τ + f (7.1)

∇ · u = 0

where
τ = µ[∇u +∇uT − 2

3∇ · uI] (7.2)

The Navier–Stokes equations are of mixed hyperbolic-parabolic type. In fact we can regard the
steady NS equations as being a non-linear advection-diffusion equation with a constraint given by
the pressure meant to enforce the divergence free property of the velocity field.

7.1 PN − PN discretization
In the previous generic setup for time integration given by Eq. 6.2 the operator L[u] = −u · ∇u−
1
ρ∇p+∇ · τ + f .

One way to approach the solution of the NS equations is via a splitting method which leads to
solving a set of time dependent problems and a final correction step.

For brevity let us rewrite the momentum equation by denoting the non-linear term as N and
the viscous one as L

ρ
∂u
∂t

= −∇p+N(u) + L(u) + f (7.3)

with
L(u) = ∇ · τ = ∇ · µ[∇u +∇uT − 2

3∇ · uI] (7.4)
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and
N(u) = ρu · ∇u (7.5)

Due to stability and efficiency reasons we solve the nonlinear steps via an explicit method and
the linear ones implicitly. This leads to two sets of choices either Explicit AB/Implicit AM or
Implicit BDF/Explicit extrapolation.

Time integration

k∑
j=0

bj
∆tu

n+1−j = −∇pn+1 +N(un+1) + L(un+1) + fn+1 (7.6)

By extrapolating the nonlinear term we have

N(un+1) =
k∑
j=1

ajN(un+1−j)

And by now separating the implicit and explicit parts, i.e. separating the sum on the left hand
side

b0
∆tu

n+1 = −∇pn+1 + L(un+1)−
k∑
j=1

bj
∆tu

n+1−j +
k∑
j=1

ajN(un+1−j) + fn+1

︸ ︷︷ ︸
F(un)

(7.7)

Note that the velocity terms and the forcing on the right hand side are fully explicit and depend
on the velocity at the previous time step, thus we can gather them into the term F

At a closer scrutiny of the stress tensor term we have

L(u) = ∇ · µ[∇u +∇uT − 2
3∇ · uI] (7.8)

= µ[∆u + 1
3∇(∇ · u)]

= µ[∇(∇ · u)−∇× (∇× u) + 1
3∇(∇ · u)]

= µ
4
3∇(∇ · u)− µ∇× (∇× u)

Now in our time discretization

L(un+1) = µ[43∇(∇ · un+1)−∇× (∇× un+1)] (7.9)

= µ
4
3∇(∇ · un+1)− µ

k∑
j=1

aj∇× (∇× un+1−j)
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With Eq. 7.10 we have

∇pn+1 = − b0∆tu
n+1 + F(un)− L(un+1) (7.10)

= − b0∆tu
n+1 + F(un)− µ4

3∇(∇ · un+1) + µ
k∑
j=1

aj∇× (∇× un+1−j)

= − b0∆tu
n+1 − µ4

3∇(∇ · un+1) + F̃(un)

Now take the divergence of the Eq.7.1

∇ · ∇pn+1 = − b0∆t∇ · u
n+1 −∇ · µ4

3∇(∇ · un+1) +∇ · F̃(un) (7.11)

And by denoting QT = ∇ · u we obtain the pressure laplace equation

∇ · ∇pn+1 = − b0∆tQ
n+1
T −∇ · µ4

3∇Q
n+1
T +∇ · F̃(un) (7.12)

Taking q ∈ L2
0(Ω) the variational formulation for the Laplace pressure reads∫

Ω
∇ · ∇pn+1 · q dΩ = − b0∆t

∫
Ω
Qn+1
T · qdΩ− 4

3

∫
Ω
∇ · µ∇Qn+1

T · q dΩ +
∫

Ω
∇ · F̃(un) · q dΩ (7.13)

Via derivation by parts for each term we have∫
Ω
∇ · ∇pn+1 · q dΩ =

∮
∇pn+1 · n · q dS −

∫
Ω
∇pn+1 · ∇q dΩ (7.14)∫

Ω
∇ · µ∇Qn+1

T · q dΩ =
∮
µ∇Qn+1

T · n · q dS −
∫

Ω
µ∇Qn+1

T · ∇q dΩ∫
Ω
∇ · F̃(un) · q dΩ =

∮
F̃(un) · n · q dS −

∫
Ω

F̃(un) · ∇q dΩ

Since in the incompressible case we have QT = 0 we have that∮
∇pn+1 · n · q dS =

∮
µ∇Qn+1

T · n · q dS +
∮

F̃(un) · n · q dS (7.15)

note that for the Low mach variant the term QT is nonzero and has to be added to the solver.
The boundary conditions for the pressure are obtained by taking the normal of Eq. 7.1, i.e.

∇pn+1 · n = − b0∆tu
n+1 · n + L(un+1) · n + F(un) · n (7.16)

Since in fact we had a split of the Laplace term that is now partially incorporating in F̃(un) we
see that Eq. 7.1 substracted from Eq. 7.1 leaves us with ∇pn+1 · n = − b0

∆tu
n+1 · n

With the computed pressure we go back to Eq.7.1 using now

L(un+1) = µ∆un+1 + µ

3∇(∇ · un+1) (7.17)

to obtain the follwing Helmholtz system to solve

b0
∆tu

n+1 − µ∆un+1 = −∇pn+1 + µ

3∇(Qn+1
T )− F(un) (7.18)
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Chapter 8

Mathematical routines of interest

An example of specifying surface normals in the .usr file

c-----------------------------------------------------------------------
subroutine userbc (ix,iy,iz,iside,eg)
include ’SIZE’
include ’TOTAL’
include ’NEKUSE’

integer e,eg,f
real snx,sny,snz ! surface normals

f = eface1(iside)
e = gllel (eg)

if (f.eq.1.or.f.eq.2) then ! "r face"
snx = unx(iy,iz,iside,e) ! Note: iy,iz
sny = uny(iy,iz,iside,e)
snz = unz(iy,iz,iside,e)

elseif (f.eq.3.or.f.eq.4) then ! "s face"
snx = unx(ix,iz,iside,e) ! ix,iz
sny = uny(ix,iz,iside,e)
snz = unz(ix,iz,iside,e)

elseif (f.eq.5.or.f.eq.6) then ! "t face"
snx = unx(ix,iy,iside,e) ! ix,iy
sny = uny(ix,iy,iside,e)
snz = unz(ix,iy,iside,e)

endif

ux=0.0
uy=0.0
uz=0.0
temp=0.0
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return
end

This example will load a list of field files (filenames are read from a file) into the solver using the
load_ fld() function. After the data is loaded, the user is free to compute other postprocessing
quantities. At the end the results are dumped onto a regular (uniform) mesh by a subsequent call
to prepost().

Note: The regular grid data (field files) cannot be used as a restart file (uniform->GLL inter-
polation is unstable)!

SUBROUTINE USERCHK INCLUDE ’SIZE’ INCLUDE ’TOTAL’ INCLUDE ’RESTART’
character*80 filename(9999)
ntot = nx1*ny1*nz1*nelv
ifreguo = .true. ! dump on regular (uniform) grid instead of GLL nrg = 16 ! dimension of

regular grid (nrg**ndim)
! read file-list if (nid.eq.0) then open(unit=199,file=’file.list’,form=’formatted’,status=’old’)

read(199,*) nfiles read(199,’(A80)’) (filename(i),i=1,nfiles) close(199) endif call bcast(nfiles,isize)
call bcast(filename,nfiles*80)

do i = 1,nfiles call load_ fld(filename(i))
! do something ! note: make sure you save the result into arrays which are ! dumped by

prepost() e.g. T(nx1,ny1,nz1,nelt,ldimt) ...
! dump results into file call prepost(.true.,’his’) enddo
! we’re done call exitt
Spectral Interpolation Tool
Check intpts(). Monitor Points
Multiple monitor points can be defined in the file hpts.in to examine the field data at every

timestep.
setup an ASCII file called ’hpts.in’ e.g:
3 !number of monitoring points 1.1 -1.2 1.0 . . . x y z
depending on the number number of monitoring points you may need to increase lhis in SIZE

add ’call hpts()’ to userchk()
Grid to Grid Interpolation
To interpolate an existing field file (e.g. base.fld) onto a new mesh do the following:
set lpart in SIZE to a large value (e.g. 100’000 or larger) depending on your memory footprint

compile Nek with MPIIO support set NSTEPS=0 in the .rea file (post-processing mode) run nek
using the new geometry (e.g. new_ geom.f0000) run nek using the old geometry and add this code
snipplet to userchk()

character*132 newfld, oldfld, newgfld data newfld, oldfld, newgfld /’new0.f0001’,’base.fld’,’new_
geom.f0000’/ c call g2gi(newfld, oldfld, newgfld) ! grid2grid interpolation call exitt()

Lagrangian Particle Tracking
The interpolation tool can be used for Lagrangian particle tracking (the particles are the inter-

polation points).
Workflow:
set initial particle positions (e.g. reading a file particle.pos0) x_ part <- x_ pos0
LOOP
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compute field quantities interpolate field quantities for all particles using intpts() dump/store
particle data advect particles using particle_ advect()

END LOOP

subroutine particle\_ advect(rtl,mr,npart,dt\_ p)
c
c Advance particle position in time using 4th-order Adams-Bashford.
c U[x\_ i(t)] for a given x\_ i(t) will be evaluated by spectral interpolation.
c Note: The particle timestep dt\_ p has be constant!
c

include ’SIZE’
include ’TOTAL’

real rtl(mr,1)

real vell(ldim,3,lpart) ! lagged velocities
save vell

integer icalld
save icalld
data icalld /0/

if(npart.gt.lpart) then
write(6,*) ’ABORT: npart>lpart - increase lpart in SIZE. ’,nid
call exitt

endif

! compute AB coefficients (for constant timestep)
if (icalld.eq.0) then

call rzero(vell,3*ldim*npart) ! k = 1
c0 = 1.
c1 = 0.
c2 = 0.
c3 = 0.
icalld = 1

elseif (icalld.eq.1) then ! k = 2
c0 = 1.5
c1 = -.5
c2 = 0.
c3 = 0.
icalld = 2

elseif (icalld.eq.2) then ! k = 3
c0 = 23.
c1 = -16.
c2 = 5.
c0 = c0/12.
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c1 = c1/12.
c2 = c2/12.
c3 = 0.
icalld = 3

else ! k = 4
c0 = 55.
c1 = -59.
c2 = 37.
c3 = -9.
c0 = c0/24.
c1 = c1/24.
c2 = c2/24.
c3 = c3/24.

endif

! compute new position x[t(n+1)]
do i=1,npart

do k=1,ndim
vv = rtl(1+2*ndim+k,i)
rtl(1+k,i) = rtl(1+k,i) +

\& dt_p*(
\& + c0*vv
\& + c1*vell(k,1,i)
\& + c2*vell(k,2,i)
\& + c3*vell(k,3,i)
\& )

! store velocity history
vell(k,3,i) = vell(k,2,i)
vell(k,2,i) = vell(k,1,i)
vell(k,1,i) = vv

enddo
enddo

return
end
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Chapter 9

Appendix

9.1 Appendix A. Extensive list of parameters .rea file

9.1.1 Parameters

This section tells nek5000

• If the input file reflects a 2D or 3D job (it should match the ldim parameter in the SIZE file).

• The combination of heat transfer, Stokes, Navier-Stokes, steady or unsteady to be run.

• The relevant physical parameters.

• The solution algorithm within nek5000 to use.

• The timestep size or Courant number to use, or whether to run variable DT (dt), etc.

A .rea file starts with the following three parameters:

NEKTON VERSION the version of nek5000

DIMENSIONAL RUN number of spatial dimensions (NDIM=2,3 - has to match the setting in
the SIZE file).

PARAMETERS FOLLOW the number of parameters which are going to be followed in the
.rea file.(NPARAM)

The latter specifies how many lines of .rea file, starting from the next line, are the parameters and
have to be read by the program.

9.1.2 Available Parameters

P001 DENSITY density for the case of constant properties (for variable density see parameter
P030).

P002 VISCOS kinematic viscosity (if < 0→ Re, otherwise 1/Re).
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P003 BETAG if > 0, natural convection is turned on (Boussinesq approximation). NOT IN USE
!

P004 GTHETA model parameter for Boussinesq approximation (see parameter P003). NOT IN
USE!

P005 PGRADX NOT IN USE!

P006 NOT IN USE!

P007 RHOCP navier5.f: param(7) = param(1) ! rhoCP = rho NOT IN USE!

P008 CONDUCT conductivity for the case of constant properties (if < 0, it defines the Peclet
number, see parameter P030).
connect2.f: if(param(8) .lt.0.0) param(8) = -1.0/param(8)
navier5.f: param(8) = param(2) ! conduct = dyn. visc

P009 NOT IN USE! (passed to CPFLD(2,3)!)
connect2.f: CPFLD(2,3)=PARAM(9)

P010 FINTIME if > 0, specifies simulation end time. Otherwise, use NSTEP (P011).
drive2.f: FINTIM = PARAM(10)

P011 NSTEP number of time steps.
connect2.f: param(11) = 1.0
drive2.f: NSTEPS = PARAM(11)

P012 DT upper bound on time step dt (if < 0, then dt = |P012| constant)
connect2.f: param(12) = 1.0
drive2.f: DT = abs(PARAM(12))

P013 IOCOMM frequency of iteration histories
drive2.f: IOCOMM = PARAM(13)

P014 IOTIME if > 0, time interval to dump the fld file. Otherwise, use IOSTEP (P015).
drive2.f: TIMEIO = PARAM(14)

P015 IOSTEP dump frequency, number of time steps between dumps.
drive2.f: IOSTEP = PARAM(15)
navier5.f: if (iastep.eq.0) iastep=param(15) ! same as iostep

P016 PSSOLVER heat/passive scalar solver:
1: Helmholz
2: CVODE
3: CVODE with user-supplied Jacobian
Note: a negative number will set source terms to 0.

P017 AXIS NOT IN USE!

P018 GRID NOT IN USE!
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P019 INTYPE NOT IN USE!
connect2.f: param(19) = 0.0

P020 NORDER NOT IN USE!

P021 DIVERGENCE tolerance for the pressure solver.
drive2.f: TOLPDF = abs(PARAM(21))
hmholtz.f: if (name.eq.’PRES’.and.param(21).ne.0) tol=abs(param(21))

P022 HELMHOLTZ tolerance for the velocity solver.
drive2.f: TOLHDF = abs(PARAM(22))
hmholtz.f: if (param(22).ne.0) tol=abs(param(22))
hmholtz.f: if (param(22).lt.0) tol=abs(param(22))*rbn0
navier4.f: if (param(22).ne.0) tol = abs(param(22))

P023 NPSCAL number of passive scalars.
connect2.f: NPSCAL=INT(PARAM(23))

P024 TOLREL relative tolerance for the passive scalar solver (CVODE).
drive2.f: TOLREL = abs(PARAM(24))

P025 TOLABS absolute tolerance for the passive scalar solver (CVODE).
drive2.f: TOLABS = abs(PARAM(25))

P026 COURANT maximum Courant number (number of RK4 substeps if OIFS is used).
drive2.f: CTARG = PARAM(26)

P027 TORDER temporal discretization order (2 or 3).
drive2.f: NBDINP = PARAM(27)

P028 NABMSH Order of temporal integration for mesh velocity.if 1, 2, or 3 use Adams-Bashforth
of corresponding order. Otherwise, extrapolation of order TORDER (P027).

P029 MHD_VISCOS if > 0→ magnetic viscosity, if < 0→ magnetic Reynolds number.
connect2.f: if(param(29).lt.0.0) param(29) = -1.0/param(29)
connect2.f: if (param(29).ne.0.) ifmhd = .true.
connect2.f: cpfld(ifldmhd,1) = param(29) ! magnetic viscosity

P030 USERVP if
0: constant properties
1: user-defined properties via USERVP subroutine (each scalar separately)
2: user-defined properties via USERVP subroutine (all scalars at once)

P031 NPERT if 6= 0, number of perturbation modes in linearized N-S.
connect2.f: if (param(31).ne.0.) ifpert = .true.
connect2.f: if (param(31).lt.0.) ifbase = .false. ! don’t time adv base flow
connect2.f: npert = abs(param(31))
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P032 NBCRE2 if > 0, number of BCs in .re2 file, 0: all.
connect2.f: if (param(32).gt.0) nfldt = ibc + param(32)-1

P033 NOT IN USE!

P034 NOT IN USE!

P035 NOT IN USE!

P036 XMAGNET NOT IN USE!

P037 NGRIDS NOT IN USE!

P038 NORDER2 NOT IN USE!

P039 NORDER3 NOT IN USE!

P040 NOT IN USE!

P041 1 → multiplicative SEMG
hsmg.f:c if (param(41).eq.1) ifhybrid = .true. ← NOT IN USE!

P042 linear solver for the pressure equation, 0 → GMRES or 1 → PCG

P043 0: additive multilevel scheme - 1: original two level scheme.
navier6.f: if (lx1.eq.2) param(43)=1.
navier6.f: if (param(43).eq.0) call hsmg_setup
c gmres.f:

if(param (43). eq .1) then
call uzprec (z(1,j),w,h1 ,h2 ,intype ,wp)

else ! -1
call hsmg_solve (z(1,j),w) ! z = M w

endif

P044 0=E-based additive Schwarz for PnPn-2; 1=A-based.
c fast3d .f:

if (param (44). eq .1) then
call get_fast_bc (lbr ,rbr ,lbs ,rbs ,lbt ,rbt ,e,2, ierr)

else
call get_fast_bc (lbr ,rbr ,lbs ,rbs ,lbt ,rbt ,e,3, ierr)

endif
c
c Set up matrices for each element .
c

if (param (44). eq .1) then
call set_up_fast_1D_fem ( sr(1,e),lr ,nr ,lbr ,rbr

$ ,llr(e),lmr(e),lrr(e),zgm2 (1,1),nx2 ,e)
else

call set_up_fast_1D_sem ( sr(1,e),lr ,nr ,lbr ,rbr
$ ,llr(e),lmr(e),lrr(e),e)

endif

if (param (44). eq .1) then
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c __ __ __
c Now , for each element , compute lr ,ls ,lt between specified planes
c

n1 = nx2
n2 = nx2 +1
nz0 = 1
nzn = 1
if (if3d) then

nz0= 0
nzn=n2

endif
eps = 1.e-7
if ( wdsize .eq .8) eps = 1.e -14

c
c Find mean spacing between "left -most" planes

call plane_space2 (llr ,lls ,llt , 0,wxm2 ,x,y,z,n1 ,n2 ,nz0 ,nzn)
c
c Find mean spacing between " middle " planes

call plane_space (lmr ,lms ,lmt , 1,n1 ,wxm2 ,x,y,z,n1 ,n2 ,nz0 ,nzn)
c
c Find mean spacing between "right -most" planes

call plane_space2 (lrr ,lrs ,lrt ,n2 ,wxm2 ,x,y,z,n1 ,n2 ,nz0 ,nzn)
c

else
call load_semhat_weighted ! Fills the SEMHAT arrays

endif

c navier6 .f:
if (param (44). eq .1) then ! Set up local overlapping solves

call set_fem_data_l2 (nel_proc ,ndom ,n_o ,x,y,z,tri)
else

call swap_lengths
endif

P045 Free-surface stability control (defaults to 1.0)
subs1.f: FACTOR = PARAM(45)

P046 if > 0, do not set Initial Condition (no call to subroutine SETICS).
drive2.f: irst = param(46)
ic.f: irst = param(46) ! for lee’s restart (rarely used)
subs1.f: irst = param(46)

P047 parameter for moving mesh (Poisson ratio for mesh elasticity solve (default 0.4)).
mvmesh.f: VNU = param(47)

P048 NOT IN USE!

P049 if < 0, mixing length factor NOT IN USE!.
drive2.f:c IF (PARAM(49) .LE. 0.0) PARAM(49) = TLFAC
turb.f: TLFAC = PARAM(49)

P050 NOT IN USE!

P051 NOT IN USE!

59



P052 HISTEP if > 1, history points dump frequency (in number of steps).
prepost.f: if (param(52).ge.1) iohis=param(52)

P053 NOT IN USE!

P054 direction of fixed mass flowrate (1: x-, 2: y-, 3: z-direction). If 0: x-direction.
drive2.f: if (param(54).ne.0) icvflow = abs(param(54))
drive2.f: if (param(54).lt.0) iavflow = 1 ! mean velocity

P055 volumetric flow rate for periodic case; if p54< 0, then p55:=mean velocity.
drive2.f: flowrate = param(55)

P056 NOT IN USE!

P057 NOT IN USE!

P058 NOT IN USE!

P059 if 6= 0, deformed elements (only relevant for FDM). !=0 → full Jac. eval. for each el.

P060 if 6= 0, initialize velocity to 1e-10 (for steady Stokes problem).

P061 NOT IN USE!

P062 if > 0, swap bytes for output.

P063 WDSIZO real output wordsize (8: 8-byte reals, else 4-byte).
prepost.f: if (param(63).gt.0) wdsizo = 8 ! 64-bit .fld file

P064 if = 1, restart perturbation solution
pertsupport.f: if(param(64).ne.1) then !fresh start, param(64) is restart flag

P065 number of IO nodes (if < 0 write in separate subdirectories).

P066 Output format: (only postx uses .rea value; other nondefault should be set in usrdat) (if
≥ 0 binary else ASCII).
connect2.f: param(66) = 6 ! binary is default
connect2.f: param(66) = 0 ! ASCII

P067 read format (if ≥ 0 binary else ASCII).

P068 averaging frequency in avg_all (0: every timestep).

P069 NOT IN USE!

P070 NOT IN USE!

P071 NOT IN USE!

P072 NOT IN USE!

P073 NOT IN USE!
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P074 if > 0 print Helmholtz solver iterations.
hmholtz.f: if (nid.eq.0.and.ifprint.and.param(74).ne.0) ifprinthmh=.true.

P075 NOT IN USE!

P076 NOT IN USE!

P077 NOT IN USE!

P078 NOT IN USE!

P079 NOT IN USE!

P080 NOT IN USE!

P081 NOT IN USE!

P082 coarse-grid dimension (2: linear). NOT IN USE!

P083 NOT IN USE!

P084 if < 0, force initial time step to this value.
c subs1.f:

if (param (12). lt .0. or. iffxdt ) then
iffxdt = .true.
param (12) = abs(param (12))
dt = param (12)
dtopf = dt
call compute_cfl (umax ,vx ,vy ,vz ,1.0)
goto 200

else IF (PARAM (84). NE .0.0) THEN
if (dtold.eq .0.0) then

dt = param (84)
dtold=param (84)
dtopf=param (84)
return

else
dtold=dt
dtopf=dt
dt=dtopf*param (85)
dt=min(dt ,param (12))

endif
endif

P085 set dt in setdt.
subs1.f: dt=dtopf*param(85)

P086 RESERVED ! if 6= 0, use skew-symmetric form, else convective form.
drive2.f: PARAM(86) = 0 ! No skew-symm. convection for now
navier1.f: if (param(86).ne.0.0) then ! skew-symmetric form
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c navier1 .f:
IF (PARAM (86). EQ .0.0) THEN

C Always use the convective form !!! (ER)
CALL CONV1 (CONV ,FI)

ELSE
C Use skew - symmetric form
C

c navier1 .f:
if (param (86). ne .0.0) then ! skew - symmetric form

call convopo (conv ,fi)
goto 100

endif

P087 NOT IN USE!

P088 NOT IN USE!

P089 RESERVED !

P090 NOT IN USE!

P091 NOT IN USE!

P092 NOT IN USE!

P093 number of previous solutions to use for residual projection.
(adjust MXPREF in SIZEu accordingly)

P094 if > 0, start projecting velocity and passive scalars after P094 steps

P095 if > 0, start projecting pressure after P095 steps

P096 NOT IN USE!

P097 NOT IN USE!

P098 NOT IN USE!

P099 dealiasing:
< 0: disable
3: old dealiasing
4: new dealiasing

P100 RESERVED ! pressure preconditioner when using CG solver (0: Jacobi, > 0: two-level
Schwarz) or wiseversa?

P101 number of additional modes to filter (0: only last mode)
navier5.f: ncut = param(101)+1

P102 NOT IN USE!

P103 filter weight for last mode (< 0: disabled)
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P107 if 6= 0, add it to h2 in sethlm

P116 NELX number of elements in x for Fast Tensor Product FTP solver (0: do not use FTP).
NOTE: box geometries, constant properties only!

P117 NELY number of elements in y for FTP

P118 NELZ number of elements in z for FTP

9.1.3 Available Logical Switches

This part of .rea file starts with such a line:

n LOGICAL SWITCHES FOLLOW

where n is the number of logical switches which is set in the following lines.

9.1.4 Logical switches

Note that by default all logical switches are set to false.

IFFLOW solve for fluid (velocity, pressure).

IFHEAT solve for heat (temperature and/or scalars).

IFTRAN solve transient equations (otherwise, solve the steady Stokes flow).

IFADVC specify the fields with convection.

IFTMSH specify the field(s) defined on T mesh (first field is the ALE mesh).

IFAXIS axisymmetric formulation.

IFSTRS use stress formulation in the incompressible case.

IFLOMACH use low Mach number compressible flow.

IFMGRID moving grid (for free surface flow).

IFMVBD moving boundary (for free surface flow).

IFCHAR use characteristics for convection operator.

IFSYNC use mpi barriers to provide better timing information.

IFUSERVP user-defined properties (e.g., µ, ρ) varying with space and time.
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9.2 Appendix B. Extensive list of parameters SIZE file
ldim : number of spatial dimensions (2 or 3).

lx1, ly1, lz1 : number of (GLL) points in the x, y and z directions, respectively, within each
element of mesh1 (velocity) which is equal to the (polynomial order+1) by definition. ly1 is
usually the same as lx1 and for 2D cases lz1 = 1.
1 2

lx2, ly2, lz2 : number of (GLL) points in the x, y and z directions, respectively, within each
element of mesh2 (pressure). Use lx2 = lx1 for PN/PN formulation or lx2 = lx1 − 2 for
PN/PN-2 formulation.

lx3, ly3, lz3 : number of (GLL) points in the x, y and z directions, respectively, within each
element of mesh3.
3

lxd, lyd, lzd : number of points for over integration (dealiasing), use three half rule e.g. for
lx1 = 8 use lxd = 12.

lelx, lely, lelz : maximum number of elements per rank for global FDM (Fast Diagonalization
Method) solver.

ldimt : maximum number of T-array fields (temperature + additional scalars).

lp : maximum number of ranks.

lelg : maximum (global) number of elements (it is usually set more than the # of elements existing
in the mesh, for making maximum use of memory is can be set to the exact number of mesh
elements).

lelt : maximum number of local elements for T-mesh (per rank, lelt ≥ lelg/np+ 1).

lelv : maximum number of local elements for V-mesh (lelv = lelt).

lpelv,lpelt,lpert : Number of elements of the perturbation field, number of perturbation fields

lpx1, lpy1, lpz1 : Number of point in x,y,z direction of perturbation field within each element
of mesh1

lpx2, lpy2, lpz2 : Number of point in x,y,z direction of perturbation field within each element
of mesh2

lbelv, lbelt : Total Number of elements of the B-field (MHD)

lbx1, lby1, lbz1 : Number of point in x,y,z direction of B-field within each element of mesh1
1is lx1 6= ly1 supported?
2lx1 recomeneded odd for better performance
3mesh3 is rarely used
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lbx2, lby2, lbz2 : Number of point in x,y,z direction of B-field within each element of mesh2

lx1m, ly1m, lz1m : when the mesh is a moving type lx1m = lx1, otherwise it is set to 1.

lxz : LXZ = LX1*LZ1
connect1.f: common /scruz/ snx(lxz) , sny(lxz) , snz(lxz) , efc(lxz)

lorder : maximum time integration order (2 or 3).

maxobj : maximum number of objects. zero if not using objects?

maxmbr : maximum number of members in an object.

lhis : maximum number of history points a single rank will read in (NP*LHIS < number of points
in hpts.in).

lctmp0 : NOT IN USE!
drive1.f:c COMMON /CTMP0/ DUMMY0(LCTMP0)

lctmp1 :
drive1.f:c COMMON /CTMP1/ DUMMY1(LCTMP1)
drive2.f: COMMON /SCRNS/ WORK(LCTMP1)

lvec : NOT IN USE!

mxprev : maximum number of history entries for residual projection (recommended value: 20).

lgmres : dimension of Krylov subspace in GMRES (recommended value: 40).

lmvec : NOT IN USE !

lsvec : NOT IN USE!

lstore : NOT IN USE!

maxmor : = lelt

lzl : for 2D cases lzl = 1 and for 3D cases lzl = 3 (computed automatically).

The following parameters are deprecated and were subsequently removed in newer versions.

LELGEC : LELGEC = 1

LXYZ2 : LXYZ2 = 1

LXZ21 : LXZ21 = 1

LMAXV : LMAXV = LX1*LY1*LZ1*LELV

LMAXT : LMAXT = LX1*LY1*LZ1*LELT

LMAXP : LMAXP = LX1*LY1*LZ1*LELV
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